F-INJECTIVE SINGULARITIES ARE DU BOIS

被引:0
作者
Schwede, Karl [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
WEAKLY NORMAL VARIETIES; CHARACTERISTIC ZERO; TIGHT CLOSURE; CANONICAL SINGULARITIES; RATIONAL-SINGULARITIES; SURFACE SINGULARITIES; VANISHING THEOREMS; CHARACTERISTIC-P; RINGS; PURITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that singularities of F-injective type are Du Bois. This extends the correspondence between singularities associated to the minimal model program and singularities defined by the action of Frobenius in positive characteristic.
引用
收藏
页码:445 / 473
页数:29
相关论文
共 28 条
  • [21] F-signature function of quotient singularities
    Caminata, Alessio
    De Stefani, Alessandro
    JOURNAL OF ALGEBRA, 2019, 523 : 311 - 341
  • [22] FUNDAMENTAL GROUPS OF F-REGULAR SINGULARITIES VIA F-SIGNATURE
    Carvajal-Rojas, Javier
    Schwede, Karl
    Tucker, Kevin
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2018, 51 (04): : 993 - 1016
  • [23] Arithmetic and Geometric Deformations of F-Pure and F-Regular Singularities
    Sato, Kenta
    Takagi, Shunsuke
    AMERICAN JOURNAL OF MATHEMATICS, 2025, 147 (02) : 561 - 596
  • [24] Generalized F-depth and graded nilpotent singularities
    Maddox, Kyle
    Miller, Lance Edward
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (11) : 4724 - 4748
  • [25] F-singularities of pairs and Inversion of Adjunction of arbitrary codimension
    Shunsuke Takagi
    Inventiones mathematicae, 2004, 157 : 123 - 146
  • [26] Terminal singularities, Milnor numbers, and matter in F-theory
    Arras, Philipp
    Grassi, Antonella
    Weigand, Timo
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 123 : 71 - 97
  • [27] DUAL F-SIGNATURE OF SPECIAL COHEN-MACAULAY MODULES OVER CYCLIC QUOTIENT SURFACE SINGULARITIES
    Nakajima, Yusuke
    JOURNAL OF COMMUTATIVE ALGEBRA, 2018, 10 (01) : 83 - 105
  • [28] THE MAXIMAL IDEAL CYCLES OVER NORMAL SURFACE SINGULARITIES DEFINED BY z 3= f (x, x , y )
    Oyu, Kodai
    KYUSHU JOURNAL OF MATHEMATICS, 2024, 78 (02) : 319 - 335