F-INJECTIVE SINGULARITIES ARE DU BOIS

被引:0
作者
Schwede, Karl [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
WEAKLY NORMAL VARIETIES; CHARACTERISTIC ZERO; TIGHT CLOSURE; CANONICAL SINGULARITIES; RATIONAL-SINGULARITIES; SURFACE SINGULARITIES; VANISHING THEOREMS; CHARACTERISTIC-P; RINGS; PURITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that singularities of F-injective type are Du Bois. This extends the correspondence between singularities associated to the minimal model program and singularities defined by the action of Frobenius in positive characteristic.
引用
收藏
页码:445 / 473
页数:29
相关论文
共 28 条
  • [1] The dualizing complex of F-injective and Du Bois singularities
    Bhatt, Bhargav
    Ma, Linquan
    Schwede, Karl
    MATHEMATISCHE ZEITSCHRIFT, 2018, 288 (3-4) : 1143 - 1155
  • [3] The intuitive definition of Du Bois singularities
    Kovacs, Sandor J.
    GEOMETRY AND ARITHMETIC, 2012, : 257 - 266
  • [4] Local cohomology of Du Bois singularities and applications to families
    Ma, Linquan
    Schwede, Karl
    Shimomoto, Kazuma
    COMPOSITIO MATHEMATICA, 2017, 153 (10) : 2147 - 2170
  • [5] Inversion of adjunction for rational and Du Bois pairs
    Kovacs, Sandor J.
    Schwede, Karl
    ALGEBRA & NUMBER THEORY, 2016, 10 (05) : 969 - 1000
  • [6] Stability and deformation of F-singularities
    De Stefani, Alessandro
    Smirnov, Ilya
    ISRAEL JOURNAL OF MATHEMATICS, 2024, 264 (01) : 1 - 35
  • [7] F-singularities under generic linkage
    Ma, Linquan
    Page, Janet
    Rebecca, R. G.
    Taylor, William
    Zhang, Wenliang
    JOURNAL OF ALGEBRA, 2018, 505 : 194 - 210
  • [8] F-singularities in families
    Patakfalvi, Zsolt
    Schwede, Karl
    Zhang, Wenliang
    ALGEBRAIC GEOMETRY, 2018, 5 (03): : 264 - 327
  • [9] F-SINGULARITIES VIA ALTERATIONS
    Blickle, Manuel
    Schwede, Karl
    Tucker, Kevin
    AMERICAN JOURNAL OF MATHEMATICS, 2015, 137 (01) : 61 - 109
  • [10] Bertini theorems for F-singularities
    Schwede, Karl
    Zhang, Wenliang
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 : 851 - 874