Quantum molecular dynamics simulation of shock-wave experiments in aluminum

被引:63
作者
Minakov, D. V. [1 ,2 ]
Levashov, P. R. [1 ,3 ]
Khishchenko, K. V. [1 ,2 ]
Fortov, V. E. [1 ,2 ]
机构
[1] RAS, Joint Inst High Temp, Moscow 125412, Russia
[2] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia
[3] Tomsk State Univ, Tomsk 634050, Russia
基金
俄罗斯基础研究基金会;
关键词
EQUATION-OF-STATE; GENERALIZED GRADIENT APPROXIMATION; TOTAL-ENERGY CALCULATIONS; HIGH-PRESSURE; COMPRESSIBILITY; METALS; COPPER; HUGONIOT; PSEUDOPOTENTIALS; TRANSITION;
D O I
10.1063/1.4882299
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present quantum molecular dynamics calculations of principal, porous, and double shock Hugoniots, release isentropes, and sound velocity behind the shock front for aluminum. A comprehensive analysis of available shock-wave data is performed; the agreement and discrepancies of simulation results with measurements are discussed. Special attention is paid to the melting region of aluminum along the principal Hugoniot; the boundaries of the melting zone are estimated using the self-diffusion coefficient. Also, we make a comparison with a high-quality multiphase equation of state for aluminum. Independent semiempirical and first-principle models are very close to each other in caloric variables (pressure, density, particle velocity, etc.) but the equation of state gives higher temperature on the principal Hugoniot and release isentropes than ab initio calculations. Thus, the quantum molecular dynamics method can be used for calibration of semiempirical equations of state in case of lack of experimental data. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Molecular-level analysis of shock-wave physics and derivation of the Hugoniot relations for soda-lime glass
    Grujicic, M.
    Pandurangan, B.
    Bell, W. C.
    Cheeseman, B. A.
    Patel, P.
    Gazonas, G. A.
    JOURNAL OF MATERIALS SCIENCE, 2011, 46 (22) : 7298 - 7312
  • [42] Orientation-dependent responses of tungsten single crystal under shock compression via molecular dynamics simulations
    Liu, C. M.
    Xu, C.
    Cheng, Y.
    Chen, X. R.
    Cai, L. C.
    COMPUTATIONAL MATERIALS SCIENCE, 2015, 110 : 359 - 367
  • [43] Resistance to deformation and fracture of aluminum AD1 under shock-wave loading at temperatures of 20 and 600A°C
    Garkushin, G. V.
    Kanel', G. I.
    Razorenov, S. V.
    PHYSICS OF THE SOLID STATE, 2010, 52 (11) : 2369 - 2375
  • [44] Molecular dynamics modeling of the Hugoniot states of aluminum
    Yang, Xin
    Zeng, Xiangguo
    Pu, Chuanjin
    Chen, Wenjun
    Chen, Huayan
    Wang, Fang
    AIP ADVANCES, 2018, 8 (10)
  • [45] The role of decompression and micro-jetting in shock wave synthesis experiments
    Schlothauer, T.
    Schimpf, C.
    Schwarz, M. R.
    Heide, G.
    Kroke, E.
    XXXI INTERNATIONAL CONFERENCE ON EQUATIONS OF STATE FOR MATTER (ELBRUS 2016), 2016, 774
  • [46] Shock wave compression behavior of aluminum foam
    Cheng, HF
    Huang, XM
    Xue, GX
    Han, FS
    JOURNAL OF CENTRAL SOUTH UNIVERSITY OF TECHNOLOGY, 2003, 10 (04): : 333 - 337
  • [47] Shock wave compression behavior of aluminum foam
    程和法
    黄笑梅
    薛国宪
    韩福生
    Journal of Central South University of Technology(English Edition), 2003, (04) : 333 - 337
  • [48] Shock wave compression behavior of aluminum foam
    He-fa Cheng
    Xiao-mei Huang
    Guo-xian Xue
    Fu-sheng Han
    Journal of Central South University of Technology, 2003, 10 : 333 - 337
  • [49] Convective instabilities in a laminar shock-wave/boundary-layer interaction
    Niessen, Sebastien E. M.
    Groot, Koen J.
    Hickel, Stefan
    Terrapon, Vincent E.
    PHYSICS OF FLUIDS, 2023, 35 (02)
  • [50] Shock-wave measurements of solids using the long-pulsed laser
    Uchino, M
    Kaetsu, M
    Mashimo, T
    22ND INTERNATIONAL CONGRESS ON HIGH-SPEED PHOTOGRAPHY AND PHOTONICS, 1997, 2869 : 597 - 601