Quantum molecular dynamics simulation of shock-wave experiments in aluminum

被引:63
|
作者
Minakov, D. V. [1 ,2 ]
Levashov, P. R. [1 ,3 ]
Khishchenko, K. V. [1 ,2 ]
Fortov, V. E. [1 ,2 ]
机构
[1] RAS, Joint Inst High Temp, Moscow 125412, Russia
[2] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia
[3] Tomsk State Univ, Tomsk 634050, Russia
基金
俄罗斯基础研究基金会;
关键词
EQUATION-OF-STATE; GENERALIZED GRADIENT APPROXIMATION; TOTAL-ENERGY CALCULATIONS; HIGH-PRESSURE; COMPRESSIBILITY; METALS; COPPER; HUGONIOT; PSEUDOPOTENTIALS; TRANSITION;
D O I
10.1063/1.4882299
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present quantum molecular dynamics calculations of principal, porous, and double shock Hugoniots, release isentropes, and sound velocity behind the shock front for aluminum. A comprehensive analysis of available shock-wave data is performed; the agreement and discrepancies of simulation results with measurements are discussed. Special attention is paid to the melting region of aluminum along the principal Hugoniot; the boundaries of the melting zone are estimated using the self-diffusion coefficient. Also, we make a comparison with a high-quality multiphase equation of state for aluminum. Independent semiempirical and first-principle models are very close to each other in caloric variables (pressure, density, particle velocity, etc.) but the equation of state gives higher temperature on the principal Hugoniot and release isentropes than ab initio calculations. Thus, the quantum molecular dynamics method can be used for calibration of semiempirical equations of state in case of lack of experimental data. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] FIRST-PRINCIPLE SIMULATION OF SHOCK-WAVE EXPERIMENTS FOR ALUMINUM
    Minakov, Dmitry
    Levashov, Pavel
    Khishchenko, Konstantin
    SHOCK COMPRESSION OF CONDENSED MATTER - 2011, PTS 1 AND 2, 2012, 1426
  • [2] Molecular dynamics simulation of shock melting of aluminum single crystal
    Ju, Yuanyuan
    Zhang, Qingming
    Gong, Zizheng
    Ji, Guangfu
    Zhou, Lin
    JOURNAL OF APPLIED PHYSICS, 2013, 114 (09)
  • [3] Interpretation of experiments on shock compression and isentropic expansion of uranium by quantum molecular dynamics simulations
    Paramonov, M. A.
    Minakov, D. V.
    Levashov, P. R.
    XXXIV INTERNATIONAL CONFERENCE ON INTERACTION OF INTENSE ENERGY FLUXES WITH MATTER, 2020, 1556
  • [4] Numerical Simulation of Wave Propagation and Phase Transition of Tin under Shock-Wave Loading
    Song Hai-Feng
    Liu Hai-Feng
    Zhang Guang-Cai
    Zhao Yan-Hong
    CHINESE PHYSICS LETTERS, 2009, 26 (06)
  • [5] Application of Neural Networks for Modeling Shock-Wave Processes in Aluminum
    Gracheva, N. A.
    Lekanov, M., V
    Mayer, A. E.
    Fomin, E., V
    MECHANICS OF SOLIDS, 2021, 56 (03) : 326 - 342
  • [6] APPLICATION OF NEURAL NETWORKS FOR MODELING SHOCK-WAVE PROCESSES IN ALUMINUM
    N. A. Gracheva
    M. V. Lekanov
    A. E. Mayer
    E. V. Fomin
    Mechanics of Solids, 2021, 56 : 326 - 342
  • [7] Interpretation of pulse-heating experiments for rhenium by quantum molecular dynamics
    Minakov, D., V
    Paramonov, M. A.
    Levashov, P. R.
    HIGH TEMPERATURES-HIGH PRESSURES, 2020, 49 (1-2) : 211 - 219
  • [8] Model of the behavior of aluminum and aluminum-based mixtures under shock-wave loading
    Kinelovskii, S. A.
    Maevskii, K. K.
    HIGH TEMPERATURE, 2014, 52 (06) : 821 - 829
  • [9] Quantum molecular dynamics simulation of structural and thermodynamic properties of NiAl
    Karchevskaya, E. S.
    Minakov, D. V.
    Levashov, P. R.
    XXXII INTERNATIONAL CONFERENCE ON INTERACTION OF INTENSE ENERGY FLUXES WITH MATTER (ELBRUS 2017), 2018, 946
  • [10] Molecular Dynamics Simulation of Shock Wave Propagation through RDX Crystal Lattice
    Selezenev, A. A.
    Aleynikov, A. Yu.
    Ganchuk, N. S.
    Ganchuk, S. N.
    Ermakov, P. V.
    JOURNAL OF ENERGETIC MATERIALS, 2010, 28 : 78 - 91