ON THE THURSTON BOUNDARY AND THE RELATIVELY spacing diaeresis HYPERBOLIC BOUNDARY OF TEICHMULLER SPACE

被引:0
作者
Shi, Yaozhong [1 ]
机构
[1] Wuyi Univ, Sch Math & Computat Sci, Jiangmen 529020, Peoples R China
关键词
Teichmuiller space; Thurston boundary; Relatively hyperbolic boundary; Teichmuiller boundary; GEODESICS; GEOMETRY; COMPLEX;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a result about the relation between the Thurston boundary and the relatively hyperbolic boundary of Teichmuiller space. Precisely, we prove that the identity map on Teichmuiller space extends to a continuous surjective map from the subset of the Thurston boundary consisting of minimal measured foliations to the relatively hyperbolic boundary. As an application, to relate the Thurston com-pactification and the Teichmuiller compactification of Teichmuiller space, we construct a new compactification of Teichmuiller space which is weaker than the Thurston com-pactification and the Teichmuiller compactification.
引用
收藏
页码:358 / 368
页数:11
相关论文
共 17 条
  • [1] Bridson M R., 1999, METRIC SPACES NONPOS
  • [2] Limit sets of Teichmuller geodesics with minimal nonuniquely ergodic vertical foliation, II
    Brock, Jeffrey
    Leininger, Christopher
    Modami, Babak
    Rafi, Kasra
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 758 : 1 - 66
  • [3] Limits in PMF of Teichmuller geodesics
    Chaika, Jon
    Masur, Howard
    Wolf, Michael
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 747 : 1 - 44
  • [4] Fathi A., 2012, THURSTONS WORK SURFA, V48
  • [5] Hamenstadt U., 2006, SPACES KLEINIAN GROU, V329, P187, DOI [10.1017/CBO9781139106993.009, DOI 10.1017/CBO9781139106993.009]
  • [6] QUADRATIC DIFFERENTIALS AND FOLIATIONS
    HUBBARD, J
    MASUR, H
    [J]. ACTA MATHEMATICA, 1979, 142 (3-4) : 221 - 274
  • [7] ASYMPTOTIC GEOMETRY OF TEICHMULLER SPACE
    KERCKHOFF, SP
    [J]. TOPOLOGY, 1980, 19 (01) : 23 - 41
  • [8] The Thurston boundary of Teichmuller space and complex of curves
    Kim, Young Deuk
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (03) : 675 - 682
  • [9] Klarreich E, 2018, Arxiv, DOI arXiv:1803.10339
  • [10] Limit sets of Teichmuller geodesics with minimal non-uniquely ergodic vertical foliation
    Leininger, Christopher
    Lenzhen, Anna
    Rafi, Kasra
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018, 737 : 1 - 32