Capillary performance analysis of copper powder-fiber composite wick for ultra-thin heat pipe

被引:14
作者
Niu, Junyi [1 ]
Xie, Ning [1 ]
Gao, Xuenong [1 ,2 ]
Fang, Yutang [1 ,2 ]
Zhang, Zhengguo [1 ,2 ]
机构
[1] South China Univ Technol, Sch Chem & Chem Engn, Minist Educ, Key Lab Enhanced Heat Transfer & Energy Conservat, Guangzhou 510640, Peoples R China
[2] South China Univ Technol, Guangdong Engn Technol Res Ctr Efficient Heat Sto, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
VISUALIZATION EXPERIMENTS; PUMPING PERFORMANCE; FABRICATION; FLUX;
D O I
10.1007/s00231-020-02989-5
中图分类号
O414.1 [热力学];
学科分类号
摘要
Excellent ultra-thin heat pipes (UTHP) require a wick with high capillary force (Delta P-c) and a good permeability performance (K). In this work, a copper powder-fiber composite wick was fabricated by sintering of the copper powder and fiber mixture. Effects of the copper powder particle size, copper powder volume ratio, as well as the super-hydrophilic treatment were investigated, and the results indicate that the copper powder volume ratio is the most significant factor by orthogonal experiments. Moreover, sensitivity analysis shows that super-hydrophilic treatment contributes the lower capillary force and higher permeability, except when copper powder particle size is high to 80 mesh and powder ratio is low to 20%. Interestingly, the overall capillary performance (Delta P-c center dot K) of the super-hydrophilic treated wicks is significantly improved. Besides, for the super-hydrophilic treated wicks, both the smaller copper powder particle size and volume ratio contribute the higher permeability and better comprehensive performance, even though a worse capillary force.
引用
收藏
页码:949 / 960
页数:12
相关论文
共 38 条
  • [1] Research on heat transfer performance of spiral woven wire mesh composite capillary wick ultra-thin heat pipe
    Chen, Qi
    Li, Jinwang
    Cong, Tianshu
    APPLIED THERMAL ENGINEERING, 2025, 262
  • [2] Rice-inspired oriented copper fiber wick with excellent capillary performance for ultra-thin vapor chamber
    Wang, Junxiang
    Tang, Yong
    Huang, Haoyi
    Xi, Xiaoqian
    Li, Hongming
    Yan, Caiman
    Zhang, Shiwei
    APPLIED THERMAL ENGINEERING, 2024, 236
  • [3] Sensitivity Analysis and Optimization of Heat Transfer Performance of Ultra-Thin Vapor Chamber With Composite Wick
    Huang, Zhaohui
    Li, Rui
    Gan, Yunhua
    ASME JOURNAL OF HEAT AND MASS TRANSFER, 2024, 146 (08):
  • [4] Enhanced capillary pumping performance of flexible heat pipe device with multi cross-section ultra-thin wick
    Cui, Jiarong
    Xu, Wenjun
    Hu, Zhanpeng
    Jiang, Xiyang
    Ling, Weisong
    Zhou, Wei
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2025, 160
  • [5] Experimental investigation of capillary force in a novel sintered copper mesh wick for ultra-thin heat pipes
    Tang, Yong
    Tang, Heng
    Li, Jie
    Zhang, Shiwei
    Zhuang, Baoshan
    Sun, Yalong
    APPLIED THERMAL ENGINEERING, 2017, 115 : 1020 - 1030
  • [6] Thermal performance of an ultra-thin flat heat pipe with striped super-hydrophilic wick structure
    Cui, Zhuo
    Jia, Li
    Wang, Zhou
    Dang, Chao
    Yin, Liaofei
    APPLIED THERMAL ENGINEERING, 2022, 208
  • [7] Experimental study on the thermal performance of ultra-thin flat heat pipes with novel multiscale striped composite wick structures
    Wang, Menghao
    Yang, Yinchuang
    Sun, Yiwei
    Li, Jian
    Hao, Menglong
    HELIYON, 2023, 9 (10)
  • [8] Visualization study on boiling heat transfer of ultra-thin flat heat pipe with single layer wire mesh wick
    Zu, Shuaifei
    Liao, Xiaonan
    Huang, Zhe
    Li, Deqiang
    Jian, Qifei
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 173
  • [9] A new ultra-thin vapor chamber with composite wick for thin electronic products
    Huang, Guangwen
    Liu, Wangyu
    Luo, Yuanqiang
    Li, Yong
    Chen, Hanyin
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2021, 170
  • [10] Influence of the liquid plug on the heat transfer performance of the ultra-thin flat heat pipe
    Sheng, Yuxuan
    Chen, Yuhang
    Yu, Bowen
    Tian, Mei
    Jian, Qifei
    Yu, Xiao
    APPLIED THERMAL ENGINEERING, 2023, 229