Anomalous diffusion index for Levy motions

被引:5
|
作者
Dorea, Chang C. Y. [1 ]
Medino, Ary V. [1 ]
机构
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
关键词
Levy motions; anomalous diffusion;
D O I
10.1007/s10955-006-9074-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In modelling complex systems as real diffusion processes it is common to analyse its diffusive regime through the study of approximating sequences of random walks. For the partial sums S-n = xi(1) + xi(2) + ... + xi(n) one considers the approximating sequence of processes X-(n)(t) = a(n) (S-[knt] - b(n)). Then, under sufficient smoothness requirements we have the convergence to the desired diffusion, X(" (t) X(t). A key assumption usually presumed is the finiteness of the second moment, and, hence the validity of the Central Limit Theorem. Under anomalous diffusive regime the asymptotic behavior of S-n may well be non-Gaussian and n (-1) E(S-n(2)) --> infinity. Such random walks have been referred by physicists as Levy motions or Levy flights. In this work, we introduce an alternative notion to classify these regimes, the diffusion index gamma chi. For some gamma(0)(chi) properly chosen let gamma chi = inf{gamma : 0 < gamma <= gamma(0)(chi), lim sup (t -->infinity) t(-1) E\ X(t)\ (1/gamma) < infinity). Relationship between gamma chi, the infinitesimal diffusion coefficients and the diffusion constant will be explored. Illustrative examples as well as estimates, based on extreme order statistics, for gamma chi will also be presented.
引用
收藏
页码:685 / 698
页数:14
相关论文
共 50 条
  • [1] Anomalous Diffusion Index for Lévy Motions
    Chang C. Y. Dorea
    Ary V. Medino
    Journal of Statistical Physics, 2006, 123 : 685 - 698
  • [2] LEVY WALK APPROACH TO ANOMALOUS DIFFUSION
    KLAFTER, J
    BLUMEN, A
    ZUMOFEN, G
    SHLESINGER, MF
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1990, 168 (01) : 637 - 645
  • [3] Anomalous diffusion and Levy fights in channeling
    Greenenko, AA
    Chechkin, AV
    Shul'ga, NF
    PHYSICS LETTERS A, 2004, 324 (01) : 82 - 85
  • [4] Levy flights and anomalous diffusion in the stratosphere
    Seo, KH
    Bowman, KP
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2000, 105 (D10) : 12295 - 12302
  • [5] Operator Levy motion and multiscaling anomalous diffusion
    Meerschaert, MM
    Benson, DA
    Baeumer, B
    PHYSICAL REVIEW E, 2001, 63 (02)
  • [6] Persistence in Levy-flight anomalous diffusion
    Zanette, DH
    PHYSICAL REVIEW E, 1997, 55 (06): : 6632 - 6635
  • [7] TRANSPORT ASPECTS IN ANOMALOUS DIFFUSION - LEVY WALKS
    BLUMEN, A
    ZUMOFEN, G
    KLAFTER, J
    PHYSICAL REVIEW A, 1989, 40 (07) : 3964 - 3974
  • [8] Anomalous diffusion and Levy walks in optical lattices
    Marksteiner, S
    Ellinger, K
    Zoller, P
    PHYSICAL REVIEW A, 1996, 53 (05) : 3409 - 3430
  • [9] Persistence in Levy-flight anomalous diffusion
    Zanette, Damian H.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1997, 55 (6-A):
  • [10] DYNAMIC SPORADICITY AND ANOMALOUS DIFFUSION IN THE LEVY MOTION
    WANG, XJ
    PHYSICAL REVIEW A, 1992, 45 (12): : 8407 - 8417