Functionalization of Silica SBA-15 with [3-(2-Aminoethylamino)Propyl] Trimethoxysilane in Supercritical CO2 Modified with Methanol or Ethanol for Carbon Capture

被引:15
作者
Sanchez-Vicente, Yolanda [1 ,2 ]
Stevens, Lee [3 ]
Pando, Concepcion [4 ]
Cabanas, Albertina [4 ]
机构
[1] Northumbria Univ, Fac Engn & Environm, Dept Mech & Construct Engn, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
[2] Imperial Coll London, Dept Chem Engn, South Kensington Campus, London SW7 2AZ, England
[3] Univ Nottingham, Fac Engn, Low Carbon Energy & Resources Technol Res Grp, Nottingham NG7 2RD, England
[4] Univ Complutense Madrid, Dept Phys Chem, Madrid 28040, Spain
关键词
mesoporous silica; surface functionalization; supercritical fluids; CO2; adsorption; diamine; MESOPOROUS SILICA; DIOXIDE CAPTURE; ADSORPTION; TEMPERATURE; SURFACES; SEPARATION; SORBENTS; KINETICS; NMR;
D O I
10.3390/en13215804
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The CO2 adsorption process using amine-grafted silica is a promising technology for reducing the CO2 emissions from the power and industry sectors. In this work, silica SBA-15 was functionalized using [3-(2-aminoethylamino)propyl] trimethoxysilane (AEAPTS) in supercritical CO2 (scCO(2)) modified with 10% mol methanol or ethanol. The functionalization experiments were carried out at 323 K and 12.5 MPa, and with reaction times of 2 and 3 h. The molar fraction of AEAPTS in scCO(2) plus 10% mol alcohol ranged from 0.5 x 10(-3) to 1.8 x 10(-3). It was found that as the molar fraction of AEAPTS increased, the amino-grafting density steadily rose, and the pore volume, surface area and pore size of the functionalized silica SBA-15 also decreased gradually. The scCO(2) functionalization method was compared to the traditional toluene method. The diamine-SBA-15 prepared in the scCO(2) process shows a slightly lower amine-grafting density but a higher surface area and pore volume than the ones obtained using the traditional method. Finally, the excess CO2 adsorption capacity of the materials at different temperatures and low pressure was measured. The diamine-silica SBA-15 displayed moderate excess CO2 adsorption capacities, 0.7-0.9 mmol center dot g(-1), but higher amine efficiency, ca. 0.4, at 298 K, due to the chemisorption of CO2. These findings show that diamine-grafted silica for post-combustion capture or direct air capture can be obtained using a media more sustainable than organic solvents.
引用
收藏
页数:21
相关论文
共 53 条
[1]  
[Anonymous], **NON-TRADITIONAL**
[2]  
[Anonymous], 2015, Towards Green Growth?: Tracking Progress, OECD Green Growth Studies, DOI DOI 10.1787/9789264234437-EN
[3]   Mesoporous silica and organosilica materials - Review of their synthesis and organic functionalization [J].
Asefa, Tewodros ;
Tao, Zhimin .
CANADIAN JOURNAL OF CHEMISTRY, 2012, 90 (12) :1015-1031
[4]   Carbon capture and storage update [J].
Boot-Handford, M. E. ;
Abanades, J. C. ;
Anthony, E. J. ;
Blunt, M. J. ;
Brandani, S. ;
Mac Dowell, N. ;
Fernandez, J. R. ;
Ferrari, M. -C. ;
Gross, R. ;
Hallett, J. P. ;
Haszeldine, R. S. ;
Heptonstall, P. ;
Lyngfelt, A. ;
Makuch, Z. ;
Mangano, E. ;
Porter, R. T. J. ;
Pourkashanian, M. ;
Rochelle, G. T. ;
Shah, N. ;
Yao, J. G. ;
Fennell, P. S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) :130-189
[5]   Recent Advances in the Chemistry of Metal Carbamates [J].
Bresciani, Giulio ;
Biancalana, Lorenzo ;
Pampaloni, Guido ;
Marchetti, Fabio .
MOLECULES, 2020, 25 (16)
[6]  
Brinker C.J., 1990, SOL GEL SCI, P616
[7]  
Bui M, 2018, ENERG ENVIRON SCI, V11, P1062, DOI [10.1039/c7ee02342a, 10.1039/C7EE02342A]
[8]   Reactions of organosilanes with silica surfaces in carbon dioxide [J].
Cao, CT ;
Fadeev, AY ;
McCarthy, TJ .
LANGMUIR, 2001, 17 (03) :757-761
[9]   Amine-silica composites for CO2 capture: A short review [J].
Chen, Chao ;
Zhang, Siqian ;
Row, Kyung Ho ;
Ahn, Wha-Seung .
JOURNAL OF ENERGY CHEMISTRY, 2017, 26 (05) :868-880
[10]   Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources [J].
Choi, Sunho ;
Drese, Jeffrey H. ;
Jones, Christopher W. .
CHEMSUSCHEM, 2009, 2 (09) :796-854