Boron and phosphorous co-doped porous carbon as high-performance anode for sodium-ion battery

被引:20
|
作者
Ahmad, Nazir [1 ]
Khan, Majid [1 ]
Zheng, Xiangjun [1 ]
Sun, Zhihui [1 ]
Yan, Jin [1 ]
Wei, Chaohui [1 ]
Shen, Liwei [1 ]
Batool, Nadia [1 ]
Yang, Ruizhi [1 ]
机构
[1] Soochow Univ, Soochow Inst Energy & Mat Innovat, Coll Energy, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbon; Co-doping; Sodium-ion battery; Anode; GRAPHENE; NITROGEN; LITHIUM; FRAMEWORKS; REDUCTION; ELECTRODE; FABRICATION; NANOFIBERS; COMPOSITE;
D O I
10.1016/j.ssi.2020.115455
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium-ion batteries (SIBs) have attracted extensive attention as the important replacement for lithium-ion batteries, due to the nature abundance of sodium sources. The key to high-performance SIBs lies in appropriate anode material with sufficient space and sites for the diffusion and adsorption of sodium ion (Na+). Heteroatom doping in carbon has proven to be an effective strategy to improve the electrochemical performance of carbon-based anodes for SIB. The feasible preparation of doped carbon is essential for the development of SIBs. Here, boron (B) and phosphorous (P) co-doped honeycomb-like carbon (BPC) has been synthesized by one-step pyrolysis of onium salts containing B and P. Benefiting from dual doping of B and P in carbon, the increased layer space, defects and electrical conductivity of BPC enhance the adsorption capability of Na+, mass transport and charge diffusion. The formed porous structure in BPC can promote the electrolyte penetration as well as buffer the volume changes during cycling. When employed as the anode material for SIBs, high storage capacity and excellent cycle life have been enabled. This contribution paves a feasible and controlled approach to prepared heteratom-doped carbons for Na+ storage.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] From Jackfruit Rags to Hierarchical Porous N-Doped Carbon: A High-Performance Anode Material for Sodium-Ion Batteries
    Baisheng Zhao
    Yichun Ding
    Zhenhai Wen
    Transactions of Tianjin University, 2019, 25 (05) : 429 - 436
  • [32] Nitrogen-Doped Porous Carbon Nanosheets as Low-Cost, High-Performance Anode Material for Sodium-Ion Batteries
    Wang, Heng-guo
    Wu, Zhong
    Meng, Fan-lu
    Ma, De-long
    Huang, Xiao-lei
    Wang, Li-min
    Zhang, Xin-bo
    CHEMSUSCHEM, 2013, 6 (01) : 56 - 60
  • [33] A porous biomass-derived anode for high-performance sodium-ion batteries
    Zhu, Youyu
    Chen, Mingming
    Li, Qi
    Yuan, Chao
    Wang, Chengyang
    CARBON, 2018, 129 : 695 - 701
  • [34] Construction of MnS nanocubes confined in N, S co-doped carbon as high-performance anodes for sodium-ion batteries
    Li, Chao
    Liu, Sihan
    Lu, Sitong
    Wang, Sitian
    Li, Qing
    Zhang, Yu
    Cao, Kangzhe
    INORGANIC CHEMISTRY COMMUNICATIONS, 2024, 170
  • [35] N, P co-doped pitch derived soft carbon nanoboxes as high-performance anodes for sodium-ion batteries
    Zhao, Yan
    Cong, Yao
    Ning, Hui
    Fei, Xiang
    Wu, Chenghao
    Wang, Heng
    He, Zhengqiu
    Wang, Yani
    Zhao, Qingshan
    Wu, Mingbo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 918
  • [36] Synthesis of boron, nitrogen co-doped porous carbon from asphaltene for high-performance supercapacitors
    周颖
    王道龙
    王春雷
    金新新
    邱介山
    Chinese Physics B, 2014, (08) : 64 - 68
  • [37] Experimental and theoretical investigation on boron, phosphorus dual doped hard carbon as anode for sodium-ion battery
    Mahato, Sanchayan
    Das, Atish
    Biswas, Koushik
    JOURNAL OF ENERGY STORAGE, 2024, 104
  • [38] Synthesis of boron, nitrogen co-doped porous carbon from asphaltene for high-performance supercapacitors
    Zhou Ying
    Wang Dao-Long
    Wang Chun-Lei
    Jin Xin-Xin
    Qiu Jie-Shan
    CHINESE PHYSICS B, 2014, 23 (08)
  • [39] Coal-Based Hierarchically Porous Carbon Nanofibers as High-Performance Anode for Sodium-Ion Batteries
    Gao, Junting
    Wang, Xingchao
    Lu, Xiaoquan
    Chao, Cuiqin
    Liang, Yuanyuan
    Gao, Ping
    Sun, Ying
    Liu, Anjie
    Huang, Yudai
    CHEMELECTROCHEM, 2022, 9 (15):
  • [40] Boron-Doped Anatase TiO2 as a High-Performance Anode Material for Sodium-Ion Batteries
    Wang, Baofeng
    Zhao, Fei
    Du, Guodong
    Porter, Spencer
    Liu, Yong
    Zhang, Peng
    Cheng, Zhenxiang
    Liu, Hua Kun
    Huang, Zhenguo
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (25) : 16009 - 16015