A note on maxima of bivariate random vectors

被引:6
作者
Hooghiemstra, G
Husler, J
机构
[1] DELFT UNIV TECHNOL,DEPT TECH MATH,DELFT,NETHERLANDS
[2] UNIV BERN,DEPT STAT,CH-3012 BERN,SWITZERLAND
关键词
maxima; triangular array; bivariate normal random vectors; limiting distribution; extreme value distribution; process of maxima with respect to directions; dependence;
D O I
10.1016/S0167-7152(96)00005-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For i.i.d. bivariate normal vectors we consider the maxima of the projections with respect to two arbitrary directions. A limit theorem for these maxima is proved for the case that the angle of the two directions approaches zero. The result is generalized to a functional limit theorem.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 7 条
[1]  
BILLINGSLEY P, 1968, WEAK CONVERGENCE PRO
[2]   EXTREME VALUES OF INDEPENDENT STOCHASTIC-PROCESSES [J].
BROWN, BM ;
RESNICK, SI .
JOURNAL OF APPLIED PROBABILITY, 1977, 14 (04) :732-739
[3]  
DEHAAN L, 1986, PROBAB THEORY REL, V72, P477, DOI 10.1007/BF00344716
[4]  
FALK M, 1994, DMV SEMINAR, V23
[5]   MAX-INFINITELY DIVISIBLE AND MAX-STABLE SAMPLE CONTINUOUS-PROCESSES [J].
GINE, E ;
HAHN, MG ;
VATAN, P .
PROBABILITY THEORY AND RELATED FIELDS, 1990, 87 (02) :139-165
[6]   MAXIMA OF NORMAL RANDOM VECTORS - BETWEEN INDEPENDENCE AND COMPLETE DEPENDENCE [J].
HUSLER, J ;
REISS, RD .
STATISTICS & PROBABILITY LETTERS, 1989, 7 (04) :283-286
[7]   SEMI-MIN-STABLE PROCESSES [J].
PENROSE, MD .
ANNALS OF PROBABILITY, 1992, 20 (03) :1450-1463