APPROXIMATIONS OF STOCHASTIC 3D TAMED NAVIER-STOKES EQUATIONS

被引:2
|
作者
Peng, Xuhui [1 ]
Zhang, Rangrang [2 ]
机构
[1] Hunan Normal Univ, MOE LCSM, Sch Math & Stat, Changsha 410081, Hunan, Peoples R China
[2] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
关键词
3D tamed Navier-Stokes equations; strong solution; Gaussian noise; Poisson random measure; approximations; UNIQUENESS; EXISTENCE; DRIVEN;
D O I
10.3934/cpaa.2020241
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with 3D tamed Navier-Stokes equations with periodic boundary conditions, which can be viewed as an approximation of the classical 3D Navier-Stokes equations. We show that the strong solution of 3D tamed Navier-Stokes equations driven by Poisson random measure converges weakly to the strong solution of 3D tamed Navier-Stokes equations driven by Gaussian noise on the state space D([0, T]; H-1).
引用
收藏
页码:5337 / 5365
页数:29
相关论文
共 50 条
  • [21] The 3D Navier-Stokes equations seen as a perturbation of the 2D Navier-Stokes equations
    Iftimie, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (03): : 271 - 274
  • [22] The 3D Navier-Stokes equations seen as a perturbation of the 2D Navier-Stokes equations
    Iftimie, D
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1999, 127 (04): : 473 - 517
  • [23] TAMED 3D NAVIER-STOKES EQUATION: EXISTENCE, UNIQUENESS AND REGULARITY
    Roeckner, Michael
    Zhang, Xicheng
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2009, 12 (04) : 525 - 549
  • [24] Large Deviations and Averaging for Stochastic Tamed 3D Navier–Stokes Equations with Fast Oscillations
    Wei Hong
    Miaomiao Li
    Shihu Li
    Wei Liu
    Applied Mathematics & Optimization, 2022, 86
  • [25] Ergodicity for the 3D stochastic Navier-Stokes equations perturbed by Levy noise
    Mohan, Manil T.
    Sakthivel, K.
    Sritharan, Sivaguru S.
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (05) : 1056 - 1088
  • [26] Attractors and neo-attractors for 3D stochastic Navier-Stokes equations
    Cutland, NJ
    Keisler, HJ
    STOCHASTICS AND DYNAMICS, 2005, 5 (04) : 487 - 533
  • [27] Stochastic 3D Navier-Stokes equations in a thin domain and its α-approximation
    Chueshov, Igor
    Kuksin, Sergei
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (10-12) : 1352 - 1367
  • [28] The exponential behavior and stabilizability of the stochastic 3D Navier-Stokes equations with damping
    Liu, Hui
    Lin, Lin
    Sun, Chengfeng
    Xiao, Qingkun
    REVIEWS IN MATHEMATICAL PHYSICS, 2019, 31 (07)
  • [29] SEMIGROUP SPLITTING AND CUBATURE APPROXIMATIONS FOR THE STOCHASTIC NAVIER-STOKES EQUATIONS
    Doersek, Philipp
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (02) : 729 - 746
  • [30] 3D STEADY COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Pokorny, Milan
    Mucha, Piotr B.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2008, 1 (01): : 151 - 163