Conformally Kahler, Einstein-Maxwell metrics on Hirzebruch surfaces

被引:4
作者
Viza de Souza, Isaque [1 ]
机构
[1] Univ Quebec Montreal, Dept Math, Montreal, PQ, Canada
关键词
Conformally Kahler Einstein-Maxwell metric; Hirzebruch surface; Hermitian metric; SCALAR CURVATURE; HAMILTONIAN; 2-FORMS; GEOMETRY; CONSTANT; STABILITY; CONVEXITY; EQUATIONS;
D O I
10.1007/s10455-020-09749-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we prove that a special family of Killing potentials on certain Hirzebruch complex surfaces, found by Futaki and Ono [18], gives rise to new conformally Kahler, Einstein-Maxwell metrics. The correspondent Kahler metrics are ambitoric [7, 9] but they are not given by the Calabi ansatz [31]. This answers in positive questions raised in [18, 19].
引用
收藏
页码:263 / 284
页数:22
相关论文
共 35 条
[1]  
Abreu M, 2001, J DIFFER GEOM, V58, P151, DOI 10.4310/jdg/1090348285
[2]   Kahler geometry of toric varieties and extremal metrics [J].
Abreu, M .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1998, 9 (06) :641-651
[3]  
Apostolov V, 2004, J DIFFER GEOM, V68, P277, DOI 10.4310/jdg/1115669513
[4]  
Apostolov V, 2019, LECT NOTES
[5]  
Apostolov V, 2006, J DIFFER GEOM, V73, P359, DOI 10.4310/jdg/1146169934
[6]   The CR geometry of weighted extremal Kahler and Sasaki metrics [J].
Apostolov, Vestislav ;
Calderbank, David M. J. .
MATHEMATISCHE ANNALEN, 2021, 379 (3-4) :1047-1088
[7]   Conformally Kahler, Einstein-Maxwell geometry [J].
Apostolov, Vestislav ;
Maschler, Gideon .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2019, 21 (05) :1319-1360
[8]   Ambitoric geometry I: Einstein metrics and extremal ambikahler structures [J].
Apostolov, Vestislav ;
Calderbank, David M. J. ;
Gauduchon, Paul .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 721 :109-147
[9]  
Apostolov V, 2015, ANN SCI ECOLE NORM S, V48, P1075
[10]   CONVEXITY AND COMMUTING HAMILTONIANS [J].
ATIYAH, MF .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1982, 14 (JAN) :1-15