The trace formula for braided Hopf algebras

被引:4
作者
Doi, Y [1 ]
机构
[1] Fukui Univ, Dept Math, Fukui 910, Japan
关键词
D O I
10.1080/00927870008826933
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any n-dimensional Hopf algebra H, there is an important trace formula, due to Larson and Radford [LR1, 2]: Tr(S-2)= epsilon(t)phi(1) = nTr(S-2\Hy), where S is the antipode of H, t a nonzero right integral in H, phi a right integral in H* with phi (t) = 1 and ya specific element in H. It is natural to ask whether there is an analogue of such a formula for braided Hopf algebras, i.e., Hopf algebras in the category of Yetter-Drinfeld modules over a Hopf algebra L. The first equality was recently generalized by Andruskiewitsch and Schneider [AS, Theorem 7.3], using bosonizon process. The main purpose of this paper is to generalize the second equality. We replace the square of the antipode by the map U (see (25) below), and assume in the main result (Theorem 2.6) that L is involutory.
引用
收藏
页码:1881 / 1895
页数:15
相关论文
共 8 条
[1]   Hopf algebras of order p2 and braided Hopf algebras of order p [J].
Andruskiewitsch, N ;
Schneider, HJ .
JOURNAL OF ALGEBRA, 1998, 199 (02) :430-454
[2]   Hopf modules in Yetter-Drinfeld categories [J].
Doi, Y .
COMMUNICATIONS IN ALGEBRA, 1998, 26 (09) :3057-3070
[3]   Frobenius extensions of subalgebras of Hopf algebras [J].
Fischman, D ;
Montgomery, S ;
Schneider, HJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (12) :4857-4895
[4]   FINITE DIMENSIONAL COSEMISIMPLE HOPF-ALGEBRAS IN CHARACTERISTIC 0 ARE SEMISIMPLE [J].
LARSON, RG ;
RADFORD, DE .
JOURNAL OF ALGEBRA, 1988, 117 (02) :267-289
[5]  
LARSON RG, 1987, AM J MATH, V109, P187
[6]  
MONTGOMERY S, 1993, CBMS LECT, V82, pR1
[7]  
Schneider H.-J., 1995, TRABAJOS MATEMATICA, V31
[8]  
[No title captured]