A Data-Driven Approach to Security Science

被引:0
作者
Iyer, Ravishankar K. [1 ,2 ,3 ]
机构
[1] Univ Illinois, Coordinated Sci Lab, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA
来源
7TH ACM SYMPOSIUM ON INFORMATION, COMPUTER AND COMMUNICATIONS SECURITY (ASIACCS 2012) | 2012年
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In security more than in other computing disciplines, professionals depend heavily on rapid analysis of voluminous streams of data gathered by a combination of network-, file-, and system-level monitors. The data are used both to maintain a constant vigil against attacks and compromises on a target system and to improve the monitoring itself. While the focus of the security engineer is on ensuring operational security, it is our experience that the data are a gold mine of information that can be used to develop a greater fundamental insight and hence a stronger scientific basis for building, monitoring, and analyzing future secure systems. In order to facilitate timely and accurate detection and response to attacks several challenges must be addressed: 1. Challenge of navigating through a vast amount of data generated by security monitoring tools. 2. Challenge of conducting timely forensics and providing tools to extract and correlate information about the attack and its progress. 3. Challenge of validating and benchmarking the security monitoring infrastructure and the system resiliency to accidental errors and malicious attacks.
引用
收藏
页数:2
相关论文
共 50 条
[31]   A Data-Driven Approach to Vibrotactile Data Compression [J].
Liu, Xun ;
Dohler, Mischa .
PROCEEDINGS OF THE 2019 IEEE INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING SYSTEMS (SIPS 2019), 2019, :341-346
[32]   Application of Data Science and Machine Learning in the Prediction of College Dropout: A Data-Driven Predictive Approach [J].
Felix Jimenez, Axel Frederick ;
Sanchez Lee, Vania Stephany ;
Ibarra Belmonte, Isaul ;
Parra Gonzalez, Ezra Federico .
2023 12TH INTERNATIONAL CONFERENCE ON SOFTWARE PROCESS IMPROVEMENT, CIMPS 2023, 2023, :234-243
[33]   CODATA and global challenges in data-driven science [J].
Rybkina, A. ;
Hodson, S. ;
Gvishiani, A. ;
Kabat, P. ;
Krasnoperov, R. ;
Samokhina, O. ;
Firsova, E. .
RUSSIAN JOURNAL OF EARTH SCIENCES, 2018, 18 (04)
[34]   2022 Review of Data-Driven Plasma Science [J].
Anirudh, Rushil ;
Archibald, Rick ;
Asif, M. Salman ;
Becker, Markus M. ;
Benkadda, Sadruddin ;
Bremer, Peer-Timo ;
Bude, Rick H. S. ;
Chang, C. S. ;
Chen, Lei ;
Churchill, R. M. ;
Citrin, Jonathan ;
Gaffney, Jim A. ;
Gainaru, Ana ;
Gekelman, Walter ;
Gibbs, Tom ;
Hamaguchi, Satoshi ;
Hill, Christian ;
Humbird, Kelli ;
Jalas, Soeren ;
Kawaguchi, Satoru ;
Kim, Gon-Ho ;
Kirchen, Manuel ;
Klasky, Scott ;
Kline, John L. ;
Krushelnick, Karl ;
Kustowski, Bogdan ;
Lapenta, Giovanni ;
Li, Wenting ;
Ma, Tammy ;
Mason, Nigel J. ;
Mesbah, Ali ;
Michoski, Craig ;
Munson, Todd ;
Murakami, Izumi ;
Najm, Habib N. ;
Olofsson, K. Erik J. ;
Park, Seolhye ;
Peterson, J. Luc ;
Probst, Michael ;
Pugmire, David ;
Sammuli, Brian ;
Sawlani, Kapil ;
Scheinker, Alexander ;
Schissel, David P. ;
Shalloo, Rob J. ;
Shinagawa, Jun ;
Seong, Jaegu ;
Spears, Brian K. ;
Tennyson, Jonathan ;
Thiagarajan, Jayaraman .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2023, 51 (07) :1750-1838
[35]   Data-Driven Multiscale Science for Tread Compounding [J].
Burkhart, Craig ;
Jiang, Bing ;
Papakonstantopoulos, George ;
Polinska, Patrycja ;
Xu, Hongyi ;
Sheridan, Richard J. ;
Brinson, L. Catherine ;
Chen, Wei .
TIRE SCIENCE AND TECHNOLOGY, 2023, 51 (02) :114-131
[36]   Cloud computing for data-driven science and engineering [J].
Simmhan, Yogesh ;
Ramakrishnan, Lavanya ;
Antoniu, Gabriel ;
Goble, Carole .
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2016, 28 (04) :947-949
[37]   Stream processing in data-driven computational science [J].
Liu, Ying ;
Vijayakumar, Nithya N. ;
Plate, Beth .
2006 7TH IEEE/ACM INTERNATIONAL CONFERENCE ON GRID COMPUTING, 2006, :160-+
[38]   Maximizing the Science in the Era of Data-Driven Astronomy [J].
Aloisi, Alessandra .
ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XXV, 2017, 512 :3-12
[39]   Data-driven modeling and learning in science and engineering [J].
Montans, Francisco J. ;
Chinesta, Francisco ;
Gomez-Bombarelli, Rafael ;
Kutz, J. Nathan .
COMPTES RENDUS MECANIQUE, 2019, 347 (11) :845-855
[40]   Statistical Reliability of Data-Driven Science and Technology [J].
Takeuchi, Ichiro .
IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2025, 20 (05) :668-675