Protein-water hydrogen-bond networks of G protein-coupled receptors: Graph-based analyses of static structures and molecular dynamics

被引:41
作者
Bertalan, Eva [1 ]
Lesnik, Samo [1 ,2 ]
Bren, Urban [2 ,3 ]
Bondar, Ana-Nicoleta [1 ]
机构
[1] Free Univ Berlin, Dept Phys, Theoret Mol Biophys Grp, Arnimallee 14, D-14195 Berlin, Germany
[2] Univ Maribor, Fac Chem & Chem Engn, Smetanova Ulica 17, SI-2000 Maribor, Slovenia
[3] Univ Primorska, Fac Math Nat Sci & Informat Technol, SI-6000 Koper, Slovenia
关键词
Dynamic hydrogen-bond network; Graphs; Network analysis; Clustering algorithm; GPCR; Opioid receptor; PARTICLE MESH EWALD; OPIOID RECEPTOR; CRYSTAL-STRUCTURE; NEUTRAL ANTAGONISTS; ALLOSTERIC SODIUM; DRUG DISCOVERY; BINDING; CHARMM; SITE; VALIDATION;
D O I
10.1016/j.jsb.2020.107634
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein and protein-water hydrogen bonds shape the conformational energy landscape of G Protein-Coupled Receptors, GPCRs. As numerous static structures of GPCRs have been solved, the important question arises whether GPCR structures and GPCR conformational dynamics could be described in terms of conserved hydrogen-bond networks, and alterations of these hydrogen-bond networks along the reaction coordinate of the GPCR. To enable efficient analyses of the hydrogen-bond networks of GPCRs we implemented graph-based algorithms, and applied these algorithms to static GPCR structures from structural biology, and from molecular dynamics simulations of two opioid receptors. We find that static GPCR structures tend to have a conserved, core hydrogen-bond network which, when protein and water dynamics are included with simulations, extends to comprise most of the interior of an inactive receptor. In an active receptor, the dynamic protein-water hydrogen-bond network spans the entire receptor, bridging all functional motifs. Such an extensive, dynamic hydrogen-bond network might contribute to the activation mechanism of the GPCR.
引用
收藏
页数:16
相关论文
共 90 条
[1]   Network analysis of protein structures identifies functional residues [J].
Amitai, G ;
Shemesh, A ;
Sitbon, E ;
Shklar, M ;
Netanely, D ;
Venger, I ;
Pietrokovski, S .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 344 (04) :1135-1146
[2]  
[Anonymous], 2006, CURRENT PROTOCOLS BI
[3]  
Ballesteros J.A., 1995, Methods in Neurosciences, P366, DOI [10.1016/S1043-9471(05)80049-7, DOI 10.1016/S1043-9471(05)80049-7]
[4]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[5]   The High-Resolution Structure of Activated Opsin Reveals a Conserved Solvent Network in the Transmembrane Region Essential for Activation [J].
Blankenship, Elise ;
Vahedi-Faridi, Ardeschir ;
Lodowski, David T. .
STRUCTURE, 2015, 23 (12) :2358-2364
[6]   Reactions at Biomembrane Interfaces [J].
Bondar, Ana-Nicoleta ;
Lemieux, M. Joanne .
CHEMICAL REVIEWS, 2019, 119 (09) :6162-6183
[7]   Protonation-state-Coupled Conformational Dynamics in Reaction Mechanisms of Channel and Pump Rhodopsins [J].
Bondar, Ana-Nicoleta ;
Smith, Jeremy C. .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 2017, 93 (06) :1336-1344
[8]   Key Role of Active-Site Water Molecules in Bacteriorhodopsin Proton-Transfer Reactions [J].
Bondar, Ana-Nicoleta ;
Baudry, Jerome ;
Suhai, Sandor ;
Fischer, Stefan ;
Smith, Jeremy C. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (47) :14729-14741
[9]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[10]   Nanobody-enabled monitoring of kappa opioid receptor states [J].
Che, Tao ;
English, Justin ;
Krumm, Brian E. ;
Kim, Kuglae ;
Pardon, Els ;
Olsen, Reid H. J. ;
Wang, Sheng ;
Zhang, Shicheng ;
Diberto, Jeffrey F. ;
Sciaky, Noah ;
Carroll, F. Ivy ;
Steyaert, Jan ;
Wacker, Daniel ;
Roth, Bryan L. .
NATURE COMMUNICATIONS, 2020, 11 (01)