Enhancement of Oxygen Transfer by Design Nickel Foam Electrode for Zinc-Air Battery

被引:47
作者
Xu, Ke [1 ]
Loh, Adeline [2 ]
Wang, Baoguo [1 ]
Li, Xiaohong [2 ]
机构
[1] Tsinghua Univ, Dept Chem Engn, Beijing 100084, Peoples R China
[2] Univ Exeter, Coll Engn Math & Phys Sci, Renewable Energy Grp, Penryn TR10 9FE, Cornwall, England
基金
中国国家自然科学基金;
关键词
REDUCTION REACTION; HIGH-PERFORMANCE; ALKALINE MEDIA; BIFUNCTIONAL ELECTROCATALYST; HIGHLY EFFICIENT; WATER OXIDATION; DOPED GRAPHENE; FUEL-CELLS; EVOLUTION REACTIONS; CATHODE CATALYSTS;
D O I
10.1149/2.0361805jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
To develop a long-lifetime metal-air battery, oxygen reduction electrodes with improved mass-transfer routes are designed by adjusting the mass ratio of the hydrophobic polytetrafluoroethylene (PTFE) to carbon nanotubes (CNTs) in nickel foam. The oxygen reduction catalyst MnO2 is grown on the nickel foam using a hydrothermal method. Scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller analysis are employed to characterize the morphology, crystal structure, chemical composition, and pore structure of the electrodes, respectively. The air electrodes are evaluated using constant-current tests and electrochemical impedance spectroscopy. A PTFE: CNT mass ratio of 1:4-2:1 with 3-mm-thick nickel foam yields the optimal performance due to the balance of hydrophilicity and hydrophobicity. When the electrodes are applied in primary zinc-air batteries, the electrode with a PTFE: CNT mass ratio of 1:4 achieves the maximum power density of 95.7 mW cm(-2) with a discharge voltage of 0.8 V at 100 mA cm(-2), and completes stable discharge for over 14400 s at 20 mA cm(-2). (C) The Author(s) 2018. Published by ECS.
引用
收藏
页码:A809 / A818
页数:10
相关论文
共 78 条
[1]   Transition metal Chalcogenides for Oxygen reduction [J].
Alonso-Vante, Nicolas .
Lecture Notes in Energy, 2013, 9 :417-436
[2]   Three-Dimensional Smart Catalyst Electrode for Oxygen Evolution Reaction [J].
Chen, Sheng ;
Duan, Jingjing ;
Bian, Pengju ;
Tang, Youhong ;
Zheng, Rongkun ;
Qiao, Shi-Zhang .
ADVANCED ENERGY MATERIALS, 2015, 5 (18)
[3]   Highly Active and Durable Core-Corona Structured Bifunctional Catalyst for Rechargeable Metal-Air Battery Application [J].
Chen, Zhu ;
Yu, Aiping ;
Higgins, Drew ;
Li, Hui ;
Wang, Haijiang ;
Chen, Zhongwei .
NANO LETTERS, 2012, 12 (04) :1946-1952
[4]   Enhancing Electrocatalytic Oxygen Reduction on MnO2 with Vacancies [J].
Cheng, Fangyi ;
Zhang, Tianran ;
Zhang, Yi ;
Du, Jing ;
Han, Xiaopeng ;
Chen, Jun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (09) :2474-2477
[5]   Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts [J].
Cheng, Fangyi ;
Chen, Jun .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (06) :2172-2192
[6]   MnO2-Based Nanostructures as Catalysts for Electrochemical Oxygen Reduction in Alkaline Media [J].
Cheng, Fangyi ;
Su, Yi ;
Liang, Jing ;
Tao, Zhanliang ;
Chen, Jun .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :898-905
[7]   Oxygen reduction and fuel oxidation in alkaline solution [J].
Christensen, P. A. ;
Hamnett, A. ;
Linares-Moya, D. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (12) :5206-5214
[8]   Heteroatom-doped graphene as electrocatalysts for air cathodes [J].
Cui, Huijuan ;
Zhou, Zhen ;
Jia, Dianzeng .
MATERIALS HORIZONS, 2017, 4 (01) :7-19
[9]   XPS STUDY OF MNO OXIDATION [J].
DICASTRO, V ;
POLZONETTI, G .
JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 1989, 48 (1-2) :117-123
[10]   Co3O4 nanoparticle-modified MnO2 nanotube bifunctional oxygen cathode catalysts for rechargeable zinc-air batteries [J].
Du, Guojun ;
Liu, Xiaogang ;
Zong, Yun ;
Hor, T. S. Andy ;
Yu, Aishui ;
Liu, Zhaolin .
NANOSCALE, 2013, 5 (11) :4657-4661