Optimal matrix product states for the Heisenberg spin chain

被引:3
作者
Latorre, Jose I. [1 ]
Pico, Vicent [1 ]
机构
[1] Univ Barcelona, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain
关键词
RENORMALIZATION-GROUP; ANSATZ;
D O I
10.1088/1751-8113/42/26/265302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present some exact results for the optimal matrix product state (MPS) approximation to the ground state of the infinite isotropic Heisenberg spin-1/2 chain. Our approach is based on the systematic use of Schmidt decompositions to reduce the problem of approximating for the ground state of a spin chain to an analytical minimization. This allows one to show that results of standard simulations, e. g. density matrix renormalization group and infinite time evolving block decimation, do correspond to the result obtained by this minimization strategy and, thus, both methods deliver optimal MPS with the same energy but, otherwise, different properties. We also find that translational and rotational symmetries cannot be maintained simultaneously by the MPS ansatz of minimum energy and present explicit constructions for each case. Furthermore, we analyze symmetry restoration and quantify it to uncover new scaling relations. The method we propose can be extended to any translational invariant Hamiltonian.
引用
收藏
页数:17
相关论文
共 23 条
[1]   Exact solutions of exactly integrable quantum chains by a matrix product ansatz [J].
Alcaraz, FC ;
Lazo, MJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (14) :4149-4182
[2]   The Bethe ansatz as a matrix product ansatz [J].
Alcaraz, FC ;
Lazo, MJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (01) :L1-L7
[3]   Density-matrix renormalization group for a gapless system of free fermions [J].
Andersson, M ;
Boman, M ;
Östlund, S .
PHYSICAL REVIEW B, 1999, 59 (16) :10493-10503
[4]   Metal theory [J].
Bethe, H. .
ZEITSCHRIFT FUR PHYSIK, 1931, 71 (3-4) :205-226
[5]   Equivalence of the variational matrix product method and the density matrix renormalization group applied to spin chains [J].
Dukelsky, J ;
Martin-Delgado, MA ;
Nishino, T ;
Sierra, G .
EUROPHYSICS LETTERS, 1998, 43 (04) :457-462
[6]   Entropy and exact matrix-product representation of the Laughlin wave function [J].
Iblisdir, S. ;
Latorre, J. I. ;
Orus, R. .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)
[7]  
Latorre JI, 2004, QUANTUM INF COMPUT, V4, P48
[8]  
MURG V, 2008, ARXIV08043976
[9]   Entangled rings [J].
O'Connor, KM ;
Wootters, WK .
PHYSICAL REVIEW A, 2001, 63 (05) :9
[10]  
OSTLUND S, 1995, PHYS REV LETT, V75, P3537, DOI 10.1103/PhysRevLett.75.3537