Investigation of charge carrier dynamics in positive lithium-ion battery electrodes via optical in situ observation

被引:11
作者
Rittweger, Florian [1 ]
Modrzynski, Christian [1 ,2 ]
Roscher, Valentin [1 ]
Danilov, Dmitry L. [3 ,4 ]
Notten, Peter H. L. [3 ,4 ,5 ]
Riemschneider, Karl-Ragmar [1 ]
机构
[1] Univ Appl Sci Hamburg, Berliner Tor 7, DE-20099 Hamburg, Germany
[2] Univ Waterloo, 200 Univ Ave W, Waterloo, ON N2L 3G1, Canada
[3] Forschungszentrum Julich, IEK 9, Ostring 10, DE-52425 Julich, Germany
[4] Eindhoven Univ Technol, NL-5612 AZ Eindhoven, Netherlands
[5] Univ Technol Sydney, Sydney, NSW 2007, Australia
关键词
Lithium-ion battery; Lithium iron phosphate; Material characterization; In situ video microscopy; Transparent conducting oxides; Diffusion coefficient; LICOO2; DIFFUSION; TRANSPORT; DISCHARGE; MODEL;
D O I
10.1016/j.jpowsour.2020.228943
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present optical in situ investigations of lithium-ion dynamics in lithium iron phosphate based positive electrodes. The change in reflectivity of these cathodes during charge and discharge is used to estimate apparent diffusion coefficients for the lithiation and delithiation process of the entire electrode. Thereby, a scaling analysis of the transport process is applied, which clearly reveals its diffusive character. Results are shown for cathodes, in which the common additive carbon as well as the conductive and electrochromic marker additives (indium tin oxide and antimony tin oxide) are used. The latter leads to a substantial increase of visibility of the optical effect in the cathodes while electric properties remain qualitatively unchanged. The procedure extends common characterization techniques of positive electrode materials via a novel and integral combination of electrical and optical measurements.
引用
收藏
页数:7
相关论文
共 42 条
[1]   Revealing the Intercalation Mechanisms of Lithium, Sodium, and Potassium in Hard Carbon [J].
Alvin, Stevanus ;
Cahyadi, Handi Setiadi ;
Hwang, Jieun ;
Chang, Wonyoung ;
Kwak, Sang Kyu ;
Kim, Jaehoon .
ADVANCED ENERGY MATERIALS, 2020, 10 (20)
[2]   The source of first-cycle capacity loss in LiFePO4 [J].
Andersson, AS ;
Thomas, JO .
JOURNAL OF POWER SOURCES, 2001, 97-8 :498-502
[3]  
Boltzmann L., 1894, ANN PHYS, V53, P959, DOI DOI 10.1002/ANDP.18942891315
[4]   Influence of diffusion plane orientation on electrochemical properties of thin film LiCoO2 electrodes [J].
Bouwman, PJ ;
Boukamp, BA ;
Bouwmeester, HJM ;
Notten, PHL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (06) :A699-A709
[5]   Confirmation of the Domino-Cascade Model by LiFePO4/FePO4 Precession Electron Diffraction [J].
Brunetti, G. ;
Robert, D. ;
Bayle-Guillemaud, P. ;
Rouviere, J. L. ;
Rauch, E. F. ;
Martin, J. F. ;
Colin, J. F. ;
Bertin, F. ;
Cayron, C. .
CHEMISTRY OF MATERIALS, 2011, 23 (20) :4515-4524
[6]   On the Ageing of High Energy Lithium-Ion BatteriesComprehensive Electrochemical Diffusivity Studies of Harvested Nickel Manganese Cobalt Electrodes [J].
Capron, Odile ;
Gopalakrishnan, Rahul ;
Jaguemont, Joris ;
Van Den Bossche, Peter ;
Omar, Noshin ;
Van Mierlo, Joeri .
MATERIALS, 2018, 11 (02)
[7]   Development of Experimental Techniques for Parameterization of Multi-scale Lithium-ion Battery Models [J].
Chen, Chang-Hui ;
Planella, Ferran Brosa ;
O'Regan, Kieran ;
Gastol, Dominika ;
Widanage, W. Dhammika ;
Kendrick, Emma .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (08)
[8]   Origin of Degradation in Si-Based All-Solid-State Li-Ion Microbatteries [J].
Chen, Chunguang ;
Oudenhoven, Jos F. M. ;
Danilov, Dmitri L. ;
Vezhlev, Egor ;
Gao, Lu ;
Li, Na ;
Mulder, Fokko M. ;
Eichel, Ruediger-A. ;
Notten, Peter H. L. .
ADVANCED ENERGY MATERIALS, 2018, 8 (30)
[9]  
Crank J., 1979, MATH DIFFUSION
[10]   Mathematical modelling of ionic transport in the electrolyte of Li-ion batteries [J].
Danilov, D. ;
Notten, P. H. L. .
ELECTROCHIMICA ACTA, 2008, 53 (17) :5569-5578