Multigap nodeless superconductivity in nickel chalcogenide TlNi2Se2

被引:17
|
作者
Hong, X. C. [1 ,2 ]
Zhang, Z. [1 ,2 ]
Zhou, S. Y. [1 ,2 ]
Pan, J. [1 ,2 ]
Xu, Y. [1 ,2 ]
Wang, Hangdong [3 ,4 ]
Mao, Qianhui [3 ]
Fang, Minghu [3 ]
Dong, J. K. [1 ,2 ]
Li, S. Y. [1 ,2 ]
机构
[1] Fudan Univ, Dept Phys, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
[2] Fudan Univ, Adv Mat Lab, Shanghai 200433, Peoples R China
[3] Zhejiang Univ, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China
[4] Hangzhou Normal Univ, Dept Phys, Hangzhou 310036, Zhejiang, Peoples R China
来源
PHYSICAL REVIEW B | 2014年 / 90卷 / 06期
关键词
HIGH-TEMPERATURE SUPERCONDUCTIVITY;
D O I
10.1103/PhysRevB.90.060504
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Low-temperature thermal conductivity measurements were performed on single crystals of TlNi2Se2, a nickel chalcogenide heavy-electron superconductor with T-c similar or equal to 3.7 K. In zero field, the residual electronic contribution at T -> 0 K (kappa(0)/T) was well separated from the total thermal conductivity, which is less than 0.45% of its normal-state value. Such a tiny residual kappa(0)/T is unlikely contributed by the nodal quasiparticles. The nodeless gap structure is supported by the very weak field dependence of kappa(0)(H)/T in low magnetic fields. In the whole field range, kappa(0)(H)/T exhibits an S-shaped curve, as in the case of nickel pnictides BaNi2As2 and SrNi2P2. This common feature of nickel-based superconductors can be explained by multiple nodeless superconducting gaps.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Nodeless superconductivity in the charge density wave superconductor LaPt2Si2
    Nie, Z. Y.
    Yin, L. C.
    Thamizhavel, A.
    Wang, A.
    Shen, B.
    Che, L. Q.
    Du, F.
    Hossain, Z.
    Smidman, M.
    Lu, X.
    Yuan, H. Q.
    PHYSICAL REVIEW B, 2021, 103 (01)
  • [22] Multigap superconductivity in the charge density wave superconductor LaPt2Si2
    Das, Debarchan
    Gupta, Ritu
    Bhattacharyya, A.
    Biswas, P. K.
    Adroja, D. T.
    Hossain, Z.
    PHYSICAL REVIEW B, 2018, 97 (18)
  • [23] Nodal multigap superconductivity in KCa2Fe4As4F2
    Smidman, M.
    Kirschner, F. K. K.
    Adroja, D. T.
    Hillier, A. D.
    Lang, F.
    Wang, Z. C.
    Cao, G. H.
    Blundell, S. J.
    PHYSICAL REVIEW B, 2018, 97 (06)
  • [24] Multigap superconductivity in lithium intercalated bilayer Mo2C
    Hong, Can
    Wu, Danhong
    Li, Xi -Bo
    Zheng, Feipeng
    PHYSICAL REVIEW B, 2024, 109 (06)
  • [25] Two-dimensional multigap superconductivity in bulk 2H-TaSeS
    Patra, C.
    Agarwal, T.
    Chaudhari, Rajeshwari R.
    Singh, R. P.
    PHYSICAL REVIEW B, 2022, 106 (13)
  • [26] Nodeless superconductivity in cuprates with Ba2CuO3-type structure
    Gao, Zhi-Qiang
    Sun, Kai-Wei
    Wang, Fa
    EUROPEAN PHYSICAL JOURNAL B, 2021, 94 (12):
  • [27] Nodeless superconductivity in the topological nodal-line semimetal CaSb2
    Duan, Weiyin
    Zhang, Jiawen
    Kumar, Rohit
    Su, Hang
    Zhou, Yuwei
    Nie, Zhiyong
    Chen, Ye
    Smidman, Michael
    Cao, Chao
    Song, Yu
    Yuan, Huiqiu
    PHYSICAL REVIEW B, 2022, 106 (21)
  • [28] CHALCOGENIDE SEMICONDUCTOR SYSTEM - AS2SE3-SB2SE3
    PLATAKIS, NS
    SADAGOPAN, V
    GATOS, HC
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1969, 116 (10) : 1436 - +
  • [29] Nodeless superconductivity and its evolution with pressure in the layered dirac semimetal 2M-WS2
    Guguchia, Zurab
    Gawryluk, Dariusz J.
    Brzezinska, Marta
    Tsirkin, Stepan S.
    Khasanov, Rustem
    Pomjakushina, Ekaterina
    von Rohr, Fabian O.
    Verezhak, Joel A. T.
    Hasan, M. Zahid
    Neupert, Titus
    Luetkens, Hubertus
    Amato, Alex
    NPJ QUANTUM MATERIALS, 2019, 4
  • [30] Nodeless superconductivity and its evolution with pressure in the layered dirac semimetal 2M-WS2
    Guguchia Z.
    Gawryluk D.J.
    Brzezinska M.
    Tsirkin S.S.
    Khasanov R.
    Pomjakushina E.
    von Rohr F.O.
    Verezhak J.A.T.
    Hasan M.Z.
    Neupert T.
    Luetkens H.
    Amato A.
    npj Quantum Materials, 4 (1)