Electrochemical Properties and Chemical Oxygen Demand Depending on the Thickness of Boron-Doped Diamond

被引:2
|
作者
Song, Chang Weon [1 ]
You, Mi Young [1 ]
Lee, Jae Myung [2 ]
Cho, Dae-Seung [3 ]
Song, Pung Keun [4 ]
机构
[1] Pusan Natl Univ, Inst Mat Technol, Busan 46241, South Korea
[2] Pusan Natl Univ, Hydrogen Ship Technol Ctr, Busan 46241, South Korea
[3] Pusan Natl Univ, Dept Naval Architecture & Ocean Engn, Busan 46241, South Korea
[4] Pusan Natl Univ, Dept Mat Sci & Engn, Busan 46241, South Korea
基金
新加坡国家研究基金会;
关键词
HFCVD; boron-doped diamond; BDD; COD; wastewater; wastewater treatment; WASTE-WATER TREATMENT; DEPOSITION BEHAVIOR; RAMAN-SPECTRA; ELECTRODES; BIODEGRADATION; FILMS; NUCLEATION; FILAMENT; CARBON;
D O I
10.3390/coatings10111097
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, boron-doped diamond (BDD) film was deposited by hot-filament chemical vapor deposition (HFCVD) using acetone as the carbon source and trimethyl borate (TMB) as the boron source with the aim of lowering the manufacturing cost of BDD electrodes. The BDD film was deposited for 12 and 60 h to observe changes in the morphological behavior of the film as well as subsequent changes in the electrochemical properties. The morphology of the BDD film was not affected by the deposition time, but the thickness increased with increasing deposition time. As the deposition time increased, the deposition rate of the BDD film did not increase or decrease; rather, it remained constant at 100 nm/h. As the thickness of the BDD film increased, an increase in the potential window was observed. On the other hand, no distinct change was observed in the electrochemical activation and catalytic activity depending on the thickness, and there were not many differences. Chemical oxygen demand (COD) was measured to determine the practical applicability of the deposited BDD film. Unlike the potential window, the COD removal rate was almost the same and was not affected by the increase in the thickness of the BDD film. Both films under the two deposition conditions showed a high removal rate of 90% on average. This study confirms that BDD electrodes are much more useful for water treatment than the existing electrodes.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [32] Electrochemical oxidation of phenol at boron-doped diamond electrode
    Iniesta, J
    Michaud, PA
    Panizza, M
    Cerisola, G
    Aldaz, A
    Comninellis, C
    ELECTROCHIMICA ACTA, 2001, 46 (23) : 3573 - 3578
  • [33] Boron-doped diamond nanograss array for electrochemical sensors
    Wei, Min
    Terashima, Chiaki
    Lv, Mei
    Fujishima, Akira
    Gu, Zhong-Ze
    CHEMICAL COMMUNICATIONS, 2009, (24) : 3624 - 3626
  • [34] Electrochemical oxidation of aniline at boron-doped diamond electrodes
    Mitadera, M
    Spataru, N
    Fujishima, A
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2004, 34 (03) : 249 - 254
  • [35] Electrochemical oxidation of phenol on boron-doped diamond electrode
    Kornienko, G. V.
    Chaenko, N. V.
    Maksimov, N. G.
    Kornienko, V. L.
    Varnin, V. P.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2011, 47 (02) : 225 - 229
  • [36] Electrochemical oxidation of polyhydroxybenzenes on boron-doped diamond anodes
    Cañizares, P
    Sáez, C
    Lobato, J
    Rodrigo, MA
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2004, 43 (21) : 6629 - 6637
  • [37] Development of Electrochemical Applications of Boron-Doped Diamond Electrodes
    Einaga, Yasuaki
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2018, 91 (12) : 1752 - 1762
  • [38] Electrochemical oxidation of benzene on boron-doped diamond electrodes
    Oliveira, Robson T. S.
    Salazar-Banda, Giancarlo R.
    Santos, Mauro C.
    Calegaro, Marcelo L.
    Miwa, Douglas W.
    Machado, Sergio A. S.
    Avaca, Luis A.
    CHEMOSPHERE, 2007, 66 (11) : 2152 - 2158
  • [39] Electrochemical oxidation of phenol on boron-doped diamond electrode
    G. V. Kornienko
    N. V. Chaenko
    N. G. Maksimov
    V. L. Kornienko
    V. P. Varnin
    Russian Journal of Electrochemistry, 2011, 47
  • [40] Structural and electrochemical heterogeneities of boron-doped diamond surfaces
    Bogdanowicz, Robert
    Ryl, Jacek
    CURRENT OPINION IN ELECTROCHEMISTRY, 2022, 31