The global solution of anisotropic fourth-order Schrodinger equation

被引:0
作者
Su, Hailing [1 ]
Guo, Cuihua [1 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan, Shanxi, Peoples R China
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2019年
关键词
Anisotropic fourth-order Schrodinger equation; Global solution; Small initial value; Banach fixed point theorem; WELL-POSEDNESS; CAUCHY-PROBLEM; DISPERSION;
D O I
10.1186/s13662-019-2118-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the global existence of solutions in Sobolev space for anisotropic fourth-order Schrodinger type equation: iu(t)+Delta u+a Sigma(d)(i=1)=1(u)x(i)x(i)x(i)x(i)+b vertical bar u vertical bar(alpha)u=0, x epsilon R-n, t epsilon R, 1 <= d<n under the initial conditions: u(x,0)=phi(x), x epsilon R-n. By using the Banach fixed point theorem, we obtain the existence, the uniqueness, the continuous dependence and the decay estimate of the solution on the initial value in anisotropic Sobolev spaces (H -> yH -> Zs2,r)-H-s1-H-1 rho.
引用
收藏
页数:17
相关论文
共 24 条