Parameter identification of Box-Jenkins systems based on the differential evolution algorithm

被引:0
作者
Liu, Mengru [1 ]
Li, Junhong [1 ]
Zong, Tiancheng [1 ]
机构
[1] Nantong Univ, Sch Elect Engn, Nantong 226019, Peoples R China
来源
PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020) | 2020年
基金
中国国家自然科学基金;
关键词
parameter identification; system identification; differential evolution; Box-Jenkins systems; INSTRUMENTAL VARIABLE METHOD; ERRORS-IN-VARIABLES; MAXIMUM-LIKELIHOOD; LEAST-SQUARES; RECURSIVE-IDENTIFICATION; NEURAL-NETWORK; OPTIMIZATION; MODEL;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the parameter estimation of the Box-Jenkins system. The differential evolution algorithm is used to identify the parameters of the Box-Jenkins system and it is compared to the improved particle swarm optimization algorithm. Simulation results show that these two algorithms can effectively identify the Box-Jenkins system. The differential evolution algorithm can give more accurate parameter estimation and identification accuracy than the improved particle swarm optimization algorithm.
引用
收藏
页码:1557 / 1561
页数:5
相关论文
共 43 条
  • [1] Improving particle swarm optimization via adaptive switching asynchronous - synchronous update
    Ab Aziz, Nor Azlina
    Ibrahim, Zuwairie
    Mubin, Marizan
    Nawawi, Sophan Wahyudi
    Mohamad, Mohd Saberi
    [J]. APPLIED SOFT COMPUTING, 2018, 72 : 298 - 311
  • [2] Differential evolution algorithm for optimal reactive power dispatch
    Abou El Ela, A. A.
    Abido, M. A.
    Spea, S. R.
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2011, 81 (02) : 458 - 464
  • [3] Particle swarm optimization algorithm for optical-geometric optimization of linear fresnel solar concentrators
    Ajdad, H.
    Baba, Y. Filali
    Al Mers, A.
    Merroun, O.
    Bouatem, A.
    Boutammachte, N.
    [J]. RENEWABLE ENERGY, 2019, 130 : 992 - 1001
  • [4] Online fault diagnosis using recursive subspace identification: Application to a dam-gallery open channel system
    Akhenak, A.
    Duviella, E.
    Bako, L.
    Lecoeuche, S.
    [J]. CONTROL ENGINEERING PRACTICE, 2013, 21 (06) : 797 - 806
  • [5] Parameters estimation using sliding mode observer with shift operator
    Al-Hosani, Khalifa
    Utkin, Vadim I.
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2012, 349 (04): : 1509 - 1525
  • [6] Modified differential evolution (MDE) for optimization of non-linear chemical processes
    Babu, B. V.
    Angira, Rakesh
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2006, 30 (6-7) : 989 - 1002
  • [7] Application of Differential Evolution algorithms to multi-objective optimization problems in mixed-oxide fuel assembly design
    Charles, Alan
    Parks, Geoffrey
    [J]. ANNALS OF NUCLEAR ENERGY, 2019, 127 : 165 - 177
  • [8] Dynamic production system identification for smart manufacturing systems
    Denno, Peter
    Dickerson, Charles
    Harding, Jennifer Anne
    [J]. JOURNAL OF MANUFACTURING SYSTEMS, 2018, 48 : 192 - 203
  • [9] Optimal instrumental variable method for closed-loop identification
    Gilson, M.
    Garnier, H.
    Young, P. C.
    Van den Hof, P. M. J.
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2011, 5 (10) : 1147 - 1154
  • [10] Maximum likelihood identification of Wiener models
    Hagenblad, Anna
    Ljung, Lennart
    Wills, Adrian
    [J]. AUTOMATICA, 2008, 44 (11) : 2697 - 2705