Subexponential Time Algorithms for Finding Small Tree and Path Decompositions

被引:5
作者
Bodlaender, Hans L. [1 ,2 ]
Nederlof, Jesper [2 ]
机构
[1] Univ Utrecht, NL-3508 TC Utrecht, Netherlands
[2] Tech Univ Eindhoven, Eindhoven, Netherlands
来源
ALGORITHMS - ESA 2015 | 2015年 / 9294卷
关键词
D O I
10.1007/978-3-662-48350-3_16
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The Minimum Size Tree Decomposition (MSTD) and Minimum Size Path Decomposition (MSPD) problems ask for a given n-vertex graph G and integer k, what is the minimum number of bags of a tree decomposition (respectively, path decomposition) of width at most k. The problems are known to be NP-complete for each fixed k >= 4. In this paper we present algorithms that solve both problems for fixed k in 2(O(n/) (log n)) time and show that they cannot be solved in 2(o(n/) (log n)) time, assuming the Exponential Time Hypothesis.
引用
收藏
页码:179 / 190
页数:12
相关论文
共 11 条
[1]  
Bodlaender HL, 2011, LECT NOTES COMPUT SC, V6595, P45, DOI 10.1007/978-3-642-19754-3_7
[2]   POLYNOMIAL ALGORITHMS FOR GRAPH ISOMORPHISM AND CHROMATIC INDEX ON PARTIAL K-TREES [J].
BODLAENDER, HL .
JOURNAL OF ALGORITHMS, 1990, 11 (04) :631-643
[3]   A linear-time ie algorithm for finding three-decompositions of small treewidth [J].
Bodlaender, HL .
SIAM JOURNAL ON COMPUTING, 1996, 25 (06) :1305-1317
[4]  
Dereniowski D., 2013, 13022788 ARXIV
[5]   Which problems have strongly exponential complexity? [J].
Impagliazzo, R ;
Paturi, R ;
Zane, F .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2001, 63 (04) :512-530
[6]  
Kloks T., 1994, LNCS, V842
[7]  
Li B., 2013, 9 INT C GRAPH THEOR
[8]   Fixed-parameter tractable canonization and isomorphism test for graphs of bounded treewidth [J].
Lokshtanov, Daniel ;
Pilipczuk, Marcin ;
Pilipczuk, Michal ;
Saurabh, Saket .
2014 55TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2014), 2014, :186-195
[9]   THE NUMBER OF TREES [J].
OTTER, R .
ANNALS OF MATHEMATICS, 1948, 49 (03) :583-599
[10]  
Schaefer T. J., 1978, P 10 ANN ACM S THEOR, P216, DOI [DOI 10.1145/800133.804350, 10.1145/800133.804350]