Stationary solution for transient quantum hydrodynamics with bohmenian-type boundary conditions

被引:12
作者
Di Michele, Federica [1 ,2 ]
Marcati, Pierangelo [3 ,4 ]
Rubino, Bruno [3 ]
机构
[1] Univ Hamburg, Dept Math, Bundesstr 55, D-20146 Hamburg, Germany
[2] Univ Aquila, Dept Informat Engn Comp Sci & Math, Via Vetoio, I-67100 Laquila, Italy
[3] Univ Aquila, Dept Informat Engn Comp Sci & Math, Via Vetoio, I-67100 Laquila, Italy
[4] INFN, GranSasso Sci Inst, Math & Comp Sci Div, Laquila, Italy
关键词
Quantum hydrodynamic model; Boundary conditions; Generalized enthalpy; Linear stability; THERMAL-EQUILIBRIUM; SEMICONDUCTORS; MODEL; SYSTEM; SOLVER;
D O I
10.1007/s40314-015-0235-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive rigorously a set of boundary conditions for heterogenous devices using a description via the quantum hydrodynamic system provided by the Madelung transformations. In particular, we show that the generalized enthalpy should be constant at the interface between classical and quantum domains. This condition provides a set of boundary conditions, which we use to prove the existence and the uniqueness of regular steady solutions of the quantum hydrodynamic system. Finally, we analyse the linear stability of the system supplied with our boundary conditions and we test numerically our model on a toy device.
引用
收藏
页码:459 / 479
页数:21
相关论文
共 17 条
[1]   The Quantum Hydrodynamics System in Two Space Dimensions [J].
Antonelli, Paolo ;
Marcati, Pierangelo .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 203 (02) :499-527
[2]   On the Finite Energy Weak Solutions to a System in Quantum Fluid Dynamics [J].
Antonelli, Paolo ;
Marcati, Pierangelo .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 287 (02) :657-686
[3]  
ASCHER U, 1979, MATH COMPUT, V33, P659, DOI 10.1090/S0025-5718-1979-0521281-7
[4]   A NEW BASIS IMPLEMENTATION FOR A MIXED ORDER BOUNDARY-VALUE ODE SOLVER [J].
BADER, G ;
ASCHER, U .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1987, 8 (04) :483-500
[5]   THERMAL-EQUILIBRIUM STATES OF THE QUANTUM HYDRODYNAMIC MODEL FOR SEMICONDUCTORS IN ONE-DIMENSION [J].
BREZZI, F ;
GASSER, I ;
MARKOWICH, PA ;
SCHMEISER, C .
APPLIED MATHEMATICS LETTERS, 1995, 8 (01) :47-52
[6]   Temperature influence on hydrodynamic instabilities in a one-dimensional electron flow in semiconductors [J].
Calderon-Munoz, Williams R. ;
Jena, Debdeep ;
Sen, Mihir .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (07)
[7]   Hydrodynamic instability of confined two-dimensional electron flow in semiconductors [J].
Calderon-Munoz, Williams R. ;
Jena, Debdeep ;
Sen, Mihir .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (01)
[8]   Steady states and interface transmission conditions for heterogeneous quantum-classical 1-D hydrodynamic model of semiconductor devices [J].
Di Michele, F. ;
Marcati, P. ;
Rubino, B. .
PHYSICA D-NONLINEAR PHENOMENA, 2013, 243 (01) :1-13
[9]   The quantum hydrodynamic model for semiconductors in thermal equilibrium [J].
Gasser, I ;
Jungel, A .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1997, 48 (01) :45-59
[10]   Analysis of the viscous quantum hydrodynamic equations for semiconductors [J].
Gualdini, MP ;
Jüngel, A .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2004, 15 :577-595