Electrically driven spin qubit based on valley mixing

被引:34
作者
Huang, Wister [1 ]
Veldhorst, Menno [1 ,2 ]
Zimmerman, Neil M. [3 ]
Dzurak, Andrew S. [1 ]
Culcer, Dimitrie [4 ]
机构
[1] Univ New South Wales, Sch Elect Engn & Telecommun, Ctr Quantum Computat & Commun Technol, Sydney, NSW 2052, Australia
[2] Delft Univ Technol, QuTech, NL-2600 GA Delft, Netherlands
[3] NIST, Gaithersburg, MD 20899 USA
[4] Univ New South Wales, Sch Phys, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
SINGLE-ELECTRON SPIN; QUANTUM-DOT; SILICON; ROUGHNESS; GATE;
D O I
10.1103/PhysRevB.95.075403
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The electrical control of single spin qubits based on semiconductor quantum dots is of great interest for scalable quantum computing since electric fields provide an alternative mechanism for qubit control compared with magnetic fields and can also be easier to produce. Here we outline the mechanism for a drastic enhancement in the electrically-driven spin rotation frequency for silicon quantum dot qubits in the presence of a step at a heterointerface. The enhancement is due to the strong coupling between the ground and excited states which occurs when the electron wave function overcomes the potential barrier induced by the interface step. We theoretically calculate single qubit gate times t(pi) of 170 ns for a quantum dot confined at a silicon/silicon-dioxide interface. The engineering of such steps could be used to achieve fast electrical rotation and entanglement of spin qubits despite the weak spin-orbit coupling in silicon.
引用
收藏
页数:8
相关论文
共 46 条
[11]   Interface roughness, valley-orbit coupling, and valley manipulation in quantum dots [J].
Culcer, Dimitrie ;
Hu, Xuedong ;
Das Sarma, S. .
PHYSICAL REVIEW B, 2010, 82 (20)
[12]   Isotopically enhanced triple-quantum-dot qubit [J].
Eng, Kevin ;
Ladd, Thaddeus D. ;
Smith, Aaron ;
Borselli, Matthew G. ;
Kiselev, Andrey A. ;
Fong, Bryan H. ;
Holabird, Kevin S. ;
Hazard, Thomas M. ;
Huang, Biqin ;
Deelman, Peter W. ;
Milosavljevic, Ivan ;
Schmitz, Adele E. ;
Ross, Richard S. ;
Gyure, Mark F. ;
Hunter, Andrew T. .
SCIENCE ADVANCES, 2015, 1 (04)
[13]   Characterizing gate operations near the sweet spot of an exchange-only qubit [J].
Fei, Jianjia ;
Hung, Jo-Tzu ;
Koh, Teck Seng ;
Shim, Yun-Pil ;
Coppersmith, S. N. ;
Hu, Xuedong ;
Friesen, Mark .
PHYSICAL REVIEW B, 2015, 91 (20)
[14]   NUMERICAL EVALUATION OF RESONANT STATES [J].
FRENSLEY, WR .
SUPERLATTICES AND MICROSTRUCTURES, 1992, 11 (03) :347-350
[15]   Phonon-induced decay of the electron spin in quantum dots [J].
Golovach, VN ;
Khaetskii, A ;
Loss, D .
PHYSICAL REVIEW LETTERS, 2004, 93 (01) :016601-1
[16]   SURFACE-ROUGHNESS AT THE SI(100)-SIO2 INTERFACE [J].
GOODNICK, SM ;
FERRY, DK ;
WILMSEN, CW ;
LILIENTAL, Z ;
FATHY, D ;
KRIVANEK, OL .
PHYSICAL REVIEW B, 1985, 32 (12) :8171-8186
[17]   Low temperature silicon dioxide by thermal atomic layer deposition: Investigation of material properties [J].
Hiller, D. ;
Zierold, R. ;
Bachmann, J. ;
Alexe, M. ;
Yang, Y. ;
Gerlach, J. W. ;
Stesmans, A. ;
Jivanescu, M. ;
Mueller, U. ;
Vogt, J. ;
Hilmer, H. ;
Loeper, P. ;
Kuenle, M. ;
Munnik, F. ;
Nielsch, K. ;
Zacharias, M. .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (06)
[18]   Two-spin dephasing by electron-phonon interaction in semiconductor double quantum dots [J].
Hu, Xuedong .
PHYSICAL REVIEW B, 2011, 83 (16)
[19]   Isotope engineering of silicon and diamond for quantum computing and sensing applications [J].
Itoh, Kohei M. ;
Watanabe, Hideyuki .
MRS COMMUNICATIONS, 2014, 4 (04) :143-157
[20]  
Kawakami E, 2014, NAT NANOTECHNOL, V9, P666, DOI [10.1038/nnano.2014.153, 10.1038/NNANO.2014.153]