C-shaped G2 Hermite interpolation by rational cubic Bezier curve with conic precision

被引:6
|
作者
Li, Yajuan [1 ]
Deng, Chongyang [1 ]
Ma, Weiyin [2 ]
机构
[1] Hangzhou Dianzi Univ, Sch Sci, Hangzhou 310018, Zhejiang, Peoples R China
[2] City Univ Hong Kong, Dept Mech & Biomed Engn, Kowloon, Hong Kong, Peoples R China
关键词
Rational conic Bezier curve; Rational cubic Bezier curve; G(2) Hermite interpolation; Conic precision;
D O I
10.1016/j.cagd.2014.03.002
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a simple method for C-shaped G(2) Hermite interpolation by a rational cubic Bezier curve with conic precision. For the interpolating rational cubic Bezier curve, we derive its control points according to two conic Bezier curves, both matching the G(1) Hermite data and one end curvature of the given G(2) Hermite data, and the weights are obtained by the two given end curvatures. The conic precision property is based on the fact that the two conic Bezier curves are the same when the given G(2) Hermite data are sampled from a conic. Both the control points and weights of the resulting rational cubic Bezier curve are expressed in explicit form. (c) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:258 / 264
页数:7
相关论文
共 50 条
  • [41] ON INTERPOLATION BY PLANAR CUBIC G2 PYTHAGOREAN-HODOGRAPH SPLINE CURVES
    Jaklic, Gasper
    Kozak, Jernej
    Krajnc, Marjeta
    Vitrih, Vito
    Zagar, Emil
    MATHEMATICS OF COMPUTATION, 2010, 79 (269) : 305 - 326
  • [42] A CONVEXITY-PRESERVING C(2) PARAMETRIC RATIONAL CUBIC INTERPOLATION
    CLEMENTS, JC
    NUMERISCHE MATHEMATIK, 1992, 63 (02) : 165 - 171
  • [43] G2/C1 Hermite interpolation by planar PH B-spline curves with shape parameter
    Albrecht, Gudrun
    Beccari, Carolina Vittoria
    Romani, Lucia
    APPLIED MATHEMATICS LETTERS, 2021, 121
  • [44] G2 interpolation of free form curve networks by biquintic Gregory patches
    Computer and Automation Research, Inst, Budapest, Hungary
    Comput Aided Geom Des, 9 (873-893):
  • [45] Rational bi-cubic G2 splines for design with basic shapes
    Karciauskas, Kestutis
    Peters, Joerg
    COMPUTER GRAPHICS FORUM, 2011, 30 (05) : 1389 - 1395
  • [46] Interactive G1 and G2 Hermite Interpolation Using Coupled Log-aesthetic Curves
    Nagy F.
    Yoshida N.
    Hoffmann M.
    Computer-Aided Design and Applications, 2022, 19 (06): : 1216 - 1235
  • [47] Planar cubic G1 and quintic G2 Hermite interpolations via curvature variation minimization
    Lu, Lizheng
    Jiang, Chengkai
    Hu, Qianqian
    COMPUTERS & GRAPHICS-UK, 2018, 70 : 92 - 98
  • [48] C2 Positivity-Preserving Rational Cubic Ball Interpolation
    Jamil, Siti Jasmida
    Piah, Abd Rahni Mt
    PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 : 337 - 342
  • [49] Positivity-preserving C2 rational cubic spline interpolation
    Abbas, Muhammad
    Abd Majid, Ahmad
    Awang, Mohd Nain Hj
    Ali, Jamaludin Md
    SCIENCEASIA, 2013, 39 (02): : 208 - 213
  • [50] G2 Continuity Smooth Path Planning using Cubic Polynomial Interpolation with Membership Function
    Chang, Seong-Ryong
    Huh, Uk-Youl
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2015, 10 (02) : 676 - 687