Degree sequence conditions for maximally edge-connected graphs depending on the clique number

被引:13
作者
Dankelmann, P
Volkmann, L [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
[2] Univ Natal, Dept Math & Appl Math, ZA-4014 Durban, South Africa
关键词
degree sequence conditions; edge-connected graphs; clique number;
D O I
10.1016/S0012-365X(99)00279-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give degree sequence conditions for the equality of edge-connectivity and minimum degree of a graph with given clique number. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:217 / 223
页数:7
相关论文
共 17 条
[1]  
[Anonymous], FUNDAMENTE GRAPHENTH
[2]   GRAPHS WITH EQUAL EDGE CONNECTIVITY AND MINIMUM DEGREE [J].
BOLLOBAS, B .
DISCRETE MATHEMATICS, 1979, 28 (03) :321-323
[3]   A GRAPH-THEORETIC APPROACH TO A COMMUNICATIONS PROBLEM [J].
CHARTRAND, G .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1966, 14 (04) :778-&
[4]  
CHARTRAND G, 1996, GRAOHS DIAGRAPHS
[5]  
DANKELMANN P, 1995, ARS COMBINATORIA, V40, P270
[6]  
Dankelmann P, 1997, J GRAPH THEOR, V26, P27, DOI 10.1002/(SICI)1097-0118(199709)26:1<27::AID-JGT4>3.0.CO
[7]  
2-J
[8]   THE CONNECTIVITY OF LARGE DIGRAPHS AND GRAPHS [J].
FIOL, MA .
JOURNAL OF GRAPH THEORY, 1993, 17 (01) :31-45
[9]   SUFFICIENT CONDITION FOR EQUALITY OF EDGE-CONNECTIVITY AND MINIMUM DEGREE OF A GRAPH [J].
GOLDSMITH, DL ;
ENTRINGER, RC .
JOURNAL OF GRAPH THEORY, 1979, 3 (03) :251-255
[10]   GRAPHS WITH EQUAL EDGE-CONNECTIVITY AND MINIMUM DEGREE [J].
GOLDSMITH, DL ;
WHITE, AT .
DISCRETE MATHEMATICS, 1978, 23 (01) :31-36