From wild Lorenz-like to wild Rovella-like dynamics

被引:5
作者
Hittmeyer, Stefanie [1 ]
Krauskopf, Bernd [1 ]
Osinga, Hinke M. [1 ]
机构
[1] Univ Auckland, Dept Math, Auckland 1142, New Zealand
来源
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL | 2015年 / 30卷 / 04期
关键词
noninvertible planar map; Lorenz-like attractor; Rovella-like attractor; wild hyperbolic set; stable and unstable sets; critical set; HOMOCLINIC CLASSES; MAPS; SETS; DIFFEOMORPHISMS; BIFURCATIONS;
D O I
10.1080/14689367.2015.1081677
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a two-dimensional noninvertible map that was introduced by Bamon, Kiwi and Rivera-Letelier as a model of a wild Lorenz-like attractor in a vector field of dimension at least five; such an attractor contains an expanding equilibrium and a hyperbolic set with robust homoclinic tangencies. Advanced numerical techniques enable us to study how the stable, unstable and critical sets of the map change within the conjectured region of wild chaos in the transition from Lorenz-like to Rovella-like dynamics, that is, when the equilibrium of the vector field becomes contracting. We find numerical evidence for the existence of wild Rovella-like attractors, wild Rovella-like saddles and regions of multistability, where a Rovella-like attractor coexists with two fixed-point attractors. We identify bifurcations generating these different types of dynamics and compute them in two-parameter bifurcation diagrams.
引用
收藏
页码:525 / 542
页数:18
相关论文
共 38 条
  • [1] Afraimovich V. S., 1977, Soviet Physics - Doklady, V22, P253
  • [2] Afraimovich VS, 1982, Trans. Mosc. Math. Soc., V44, P153
  • [3] Multidimensional Rovella-like attractors
    Araujo, V.
    Castro, A.
    Pacifico, M. J.
    Pinheiro, V.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (11) : 3163 - 3201
  • [4] BIFURCATIONS FROM AN INVARIANT CIRCLE FOR 2-PARAMETER FAMILIES OF MAPS OF THE PLANE - A COMPUTER-ASSISTED STUDY
    ARONSON, DG
    CHORY, MA
    HALL, GR
    MCGEHEE, RP
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 83 (03) : 303 - 354
  • [5] Asaoka M, 2008, P AM MATH SOC, V136, P677
  • [6] HYPERBOLIC SETS EXHIBITING C1-PERSISTENT HOMOCLINIC TANGENCY FOR HIGHER DIMENSIONS (vol 136, pg 677, 2008)
    Asaoka, Masayuki
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (04) : 1533 - 1533
  • [7] BONATTI C, 2005, ENCY MATH SCI, V102
  • [8] Robust heterodimensional cycles and C1-generic dynamics
    Bonatti, Christian
    Diaz, Lorenzo J.
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2008, 7 (03) : 469 - 525
  • [9] Bumimovich L., 1979, P WINT SCH NONL WAV, P212
  • [10] MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs
    Dhooge, A
    Govaerts, W
    Kuznetsov, YA
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2003, 29 (02): : 141 - 164