A recursive kinematic random forest and alpha beta filter classifier for 2D radar tracks

被引:9
作者
Jochumsen, Lars W. [1 ,2 ]
Ostergaard, Jan [2 ]
Jensen, Soren H. [2 ]
Clemente, Carmine [3 ]
Pedersen, Morten O. [1 ]
机构
[1] Terma AS, Hovmarken 4, Lystrup, Denmark
[2] Aalborg Univ, Dept Elect Syst, Fredrik Bajers Vej 7b, Aalborg, Denmark
[3] Univ Strathclyde, Technol & Innovat Ctr, 99 George St, Glasgow, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Radar; Classification; Random forest; Alpha beta filter; Kinematic; JOINT TARGET TRACKING;
D O I
10.1186/s13634-016-0378-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, we show that by using a recursive random forest together with an alpha beta filter classifier, it is possible to classify radar tracks from the tracks' kinematic data. The kinematic data is from a 2D scanning radar without Doppler or height information. We use random forest as this classifier implicitly handles the uncertainty in the position measurements. As stationary targets can have an apparently high speed because of the measurement uncertainty, we use an alpha beta filter classifier to classify stationary targets from moving targets. We show an overall classification rate from simulated data at 82.6% and from real-world data at 79.7%. Additional to the confusion matrix, we also show recordings of real-world data.
引用
收藏
页数:12
相关论文
共 16 条
[1]   Joint target tracking and classification with particle filtering and mixture Kalman filtering using kinematic radar information [J].
Angelova, D ;
Mihaylova, L .
DIGITAL SIGNAL PROCESSING, 2006, 16 (02) :180-204
[2]  
Bishop C., 2006, Pattern recognition and machine learning, P423
[3]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[4]  
Brookner E., 1998, Tracking and Kalman filtering made easy, DOI DOI 10.1002/0471224197
[5]   Joint target tracking and classification using radar and ESM sensors [J].
Challa, S ;
Pulford, GW .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2001, 37 (03) :1039-1055
[6]  
Chen L., 2012, P 21 ACM INT C INF K, P1243, DOI DOI 10.1145/2396761.2398426
[7]  
Garg M, 2012, NAT C RES TRENDS COM, V3
[8]  
Hastie T., 2009, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, P9
[9]  
James G, 2013, SPRINGER TEXTS STAT, V103, P1, DOI 10.1007/978-1-4614-7138-7_1
[10]  
Jochumsen LW, 2015, IEEE RAD CONF, P168, DOI 10.1109/RADAR.2015.7130990