Extended formulations for convex envelopes

被引:6
作者
Ballerstein, Martin [1 ]
Michaels, Dennis [2 ]
机构
[1] ETH, Inst Operat Res, CH-8092 Zurich, Switzerland
[2] Tech Univ Dortmund, Fak Math, D-44227 Dortmund, Germany
关键词
Convex envelope; Edge-concave functions; Extended formulation; Reformulation-Linearization-Technique; Simultaneous convexification; ONE PROGRAMMING-PROBLEMS; GLOBAL OPTIMIZATION; CONCAVE FUNCTIONS; RELAXATIONS; NONCONVEX; REPRESENTATIONS; HIERARCHY; HULLS;
D O I
10.1007/s10898-013-0104-8
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this work we derive explicit descriptions for the convex envelope of nonlinear functions that are component-wise concave on a subset of the variables and convex on the other variables. These functions account for more than 30 % of all nonlinearities in common benchmark libraries. To overcome the combinatorial difficulties in deriving the convex envelope description given by the component-wise concave part of the functions, we consider an extended formulation of the convex envelope based on the Reformulation-Linearization-Technique introduced by Sherali and Adams (SIAM J Discret Math 3(3):411-430, 1990). Computational results are reported showing that the extended formulation strategy is a useful tool in global optimization.
引用
收藏
页码:217 / 238
页数:22
相关论文
共 37 条
[1]   SCIP: solving constraint integer programs [J].
Achterberg, Tobias .
MATHEMATICAL PROGRAMMING COMPUTATION, 2009, 1 (01) :1-41
[2]   A hierarchy of relaxations leading to the convex hull representation for general discrete optimization problems [J].
Adams, WP ;
Sherali, HD .
ANNALS OF OPERATIONS RESEARCH, 2005, 140 (01) :21-47
[3]  
[Anonymous], 2008, MATHEMATICA
[4]   Computable representations for convex hulls of low-dimensional quadratic forms [J].
Anstreicher, Kurt M. ;
Burer, Samuel .
MATHEMATICAL PROGRAMMING, 2010, 124 (1-2) :33-43
[5]  
Ballerstein M., 2012, P GLOB OPT WORKSH, P35
[6]   Multiterm polyhedral relaxations for nonconvex, quadratically constrained quadratic programs [J].
Bao, Xiaowei ;
Sahinidis, Nikolaos V. ;
Tawarmalani, Mohit .
OPTIMIZATION METHODS & SOFTWARE, 2009, 24 (4-5) :485-504
[7]   The Quickhull algorithm for convex hulls [J].
Barber, CB ;
Dobkin, DP ;
Huhdanpaa, H .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1996, 22 (04) :469-483
[8]   Branching and bounds tightening techniques for non-convex MINLP [J].
Belotti, Pietro ;
Lee, Jon ;
Liberti, Leo ;
Margot, Francois ;
Waechter, Andreas .
OPTIMIZATION METHODS & SOFTWARE, 2009, 24 (4-5) :597-634
[9]   ON NONCONVEX QUADRATIC PROGRAMMING WITH BOX CONSTRAINTS [J].
Burer, Samuel ;
Letchford, Adam N. .
SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (02) :1073-1089
[10]   MINLPLib - A collection of test models for mixed-integer nonlinear programming [J].
Bussieck, MR ;
Drud, AS ;
Meeraus, A .
INFORMS JOURNAL ON COMPUTING, 2003, 15 (01) :114-119