Automatic detection of subsolid pulmonary nodules in thoracic computed tomography images

被引:198
作者
Jacobs, Colin [1 ,2 ]
van Rikxoort, Eva M. [1 ,2 ]
Twellmann, Thorsten [3 ]
Scholten, Ernst Th. [4 ,5 ]
de Jong, Pim A. [4 ]
Kuhnigk, Jan-Martin [2 ]
Oudkerk, Matthijs [6 ]
de Koning, Harry J. [7 ]
Prokop, Mathias [8 ]
Schaefer-Prokop, Cornelia [1 ,9 ]
van Ginneken, Bram [1 ,2 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Dept Radiol, Diagnost Image Anal Grp, NL-6525 ED Nijmegen, Netherlands
[2] Fraunhofer MEVIS, Bremen, Germany
[3] MeVis Med Solut AG, Bremen, Germany
[4] Univ Utrecht, Med Ctr, Dept Radiol, Utrecht, Netherlands
[5] Dept Radiol, Haarlem, Netherlands
[6] Univ Groningen, Univ Med Ctr Groningen, Dept Radiol, NL-9713 AV Groningen, Netherlands
[7] Erasmus MC, Dept Publ Hlth, Rotterdam, Netherlands
[8] Radboud Univ Nijmegen, Med Ctr, Dept Radiol, NL-6525 ED Nijmegen, Netherlands
[9] Meander Med Ctr, Amersfoort, Netherlands
关键词
Computer aided detection (CAD); Computed tomography (CT); Lung nodule; Subsolid nodule; Lung cancer; GROUND-GLASS OPACITY; AIDED DETECTION; LUNG NODULES; TEXTURE CLASSIFICATION; DETECTION SYSTEM; CT IMAGES; SEGMENTATION; CANCER; MANAGEMENT; VOLUMETRY;
D O I
10.1016/j.media.2013.12.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Subsolid pulmonary nodules occur less often than solid pulmonary nodules, but show a much higher malignancy rate. Therefore, accurate detection of this type of pulmonary nodules is crucial. In this work, a computer-aided detection (CAD) system for subsolid nodules in computed tomography images is presented and evaluated on a large data set from a multi-center lung cancer screening trial. The paper describes the different components of the CAD system and presents experiments to optimize the performance of the proposed CAD system. A rich set of 128 features is defined for subsolid nodule candidates. In addition to previously used intensity, shape and texture features, a novel set of context features is introduced. Experiments show that these features significantly improve the classification performance. Optimization and training of the CAD system is performed on a large training set from one site of a lung cancer screening trial. Performance analysis on an independent test from another site of the trial shows that the proposed system reaches a sensitivity of 80% at an average of only 1.0 false positive detections per scan. A retrospective analysis of the output of the CAD system by an experienced thoracic radiologist shows that the CAD system is able to find subsolid nodules which were not contained in the screening database. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:374 / 384
页数:11
相关论文
共 48 条
[1]   Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening [J].
Aberle, Denise R. ;
Adams, Amanda M. ;
Berg, Christine D. ;
Black, William C. ;
Clapp, Jonathan D. ;
Fagerstrom, Richard M. ;
Gareen, Ilana F. ;
Gatsonis, Constantine ;
Marcus, Pamela M. ;
Sicks, JoRean D. .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (05) :395-409
[2]  
American Cancer Society, 2012, CANC FACTS FIGS
[3]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[4]   Evaluation of a computer aided detection system for lung nodules with ground glass opacity component on multidetector-row CT [J].
Beigelman-Aubry, C. ;
Hill, C. ;
Boulanger, X. ;
Brun, A. L. ;
Leclercq, D. ;
Golmard, J. L. ;
Grenier, P. A. ;
Lucidarme, O. .
JOURNAL DE RADIOLOGIE, 2009, 90 (12) :1843-1849
[5]   A CAD system for nodule detection in low-dose lung CTs based on region growing and a new active contour model [J].
Bellotti, R. ;
De Carlo, F. ;
Gargano, G. ;
Tangaro, S. ;
Cascio, D. ;
Catanzariti, E. ;
Cerello, P. ;
Cheran, S. C. ;
Delogu, P. ;
De Mitri, I. ;
Fulcheri, C. ;
Grosso, D. ;
Retico, A. ;
Squarcia, S. ;
Tommasi, E. ;
Golosio, Bruno .
MEDICAL PHYSICS, 2007, 34 (12) :4901-4910
[6]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[7]  
Cherkassky V, 1997, IEEE Trans Neural Netw, V8, P1564, DOI 10.1109/TNN.1997.641482
[8]   NEAREST NEIGHBOR PATTERN CLASSIFICATION [J].
COVER, TM ;
HART, PE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1967, 13 (01) :21-+
[9]   Automated detection of lung nodules in CT images using shape-based genetic algorithm [J].
Dehmeshki, Jamshid ;
Ye, Xujiong ;
Lin, Xinyu ;
Valdivieso, Manho ;
Amin, Hamdan .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2007, 31 (06) :408-417
[10]   Automated detection of small pulmonary nodules in whole lung CT scans [J].
Enquobahrie, Andinet A. ;
Reeves, Anthony P. ;
Yankelevitz, David F. ;
Henschke, Claudia I. .
ACADEMIC RADIOLOGY, 2007, 14 (05) :579-593