Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method

被引:162
作者
Li, Qingwei [1 ]
Liu, Changhong
Wang, Xueshen
Fan, Shoushan
机构
[1] Tsinghua Univ, Tsinghua Foxconn Nanotechnol Res Ctr, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
DEPENDENCE;
D O I
10.1088/0957-4484/20/14/145702
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The thermal contact resistance is a difficult problem that has puzzled many researchers in measuring the intrinsic thermal conductivity of an individual carbon nanotube (CNT). To avoid this problem, a non-contact Raman spectra shift method is introduced, by which we have successfully measured the thermal conductivity (kappa) of an individual single-walled carbon nanotube and a multi-walled carbon nanotube. The measured kappa values are 2400 W m(-1) K-1 and 1400 W m(-1) K-1, respectively. The CNT was suspended over a trench and heated by electricity. The temperature difference between the middle and the two ends of the CNT indicated its intrinsic heat transfer capability. The temperature difference was determined by the temperature-induced shifts of its G band Raman spectra. This new method can eliminate the impact of the thermal contact resistance which was a Gordian knot in many previous measurements.
引用
收藏
页数:5
相关论文
共 26 条
[1]   Unusually high thermal conductivity of carbon nanotubes [J].
Berber, S ;
Kwon, YK ;
Tománek, D .
PHYSICAL REVIEW LETTERS, 2000, 84 (20) :4613-4616
[2]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818
[3]   Thermal conductivity of carbon nanotubes [J].
Che, JW ;
Çagin, T ;
Goddard, WA .
NANOTECHNOLOGY, 2000, 11 (02) :65-69
[4]   Ballistic phonon thermal transport in multiwalled carbon nanotubes -: art. no. 226101 [J].
Chiu, HY ;
Deshpande, VV ;
Postma, HWC ;
Lau, CN ;
Mikó, C ;
Forró, L ;
Bockrath, M .
PHYSICAL REVIEW LETTERS, 2005, 95 (22)
[5]   Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-ω method [J].
Choi, Tae-Youl ;
Poulikakos, Dimos ;
Tharian, Joy ;
Sennhauser, Urs .
NANO LETTERS, 2006, 6 (08) :1589-1593
[6]   Measuring the thermal conductivity of a single carbon nanotube [J].
Fujii, M ;
Zhang, X ;
Xie, HQ ;
Ago, H ;
Takahashi, K ;
Ikuta, T ;
Abe, H ;
Shimizu, T .
PHYSICAL REVIEW LETTERS, 2005, 95 (06)
[7]   Computational analysis of the lattice contribution to thermal conductivity of single-walled carbon nanotubes [J].
Grujicic, M ;
Cao, G ;
Roy, WN .
JOURNAL OF MATERIALS SCIENCE, 2005, 40 (08) :1943-1952
[8]   Quasi-continuous growth of ultralong carbon nanotube arrays [J].
Hong, BH ;
Lee, JY ;
Beetz, T ;
Zhu, YM ;
Kim, P ;
Kim, KS .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (44) :15336-15337
[9]   Optical measurement of thermal transport in suspended carbon nanotubes [J].
Hsu, I-Kai ;
Kumar, Rajay ;
Bushmaker, Adam ;
Cronin, Stephen B. ;
Pettes, Michael T. ;
Shi, Li ;
Brintlinger, Todd ;
Fuhrer, Michael S. ;
Cumings, John .
APPLIED PHYSICS LETTERS, 2008, 92 (06)
[10]   Aligned carbon nanotube composite films for thermal management [J].
Huang, H ;
Liu, CH ;
Wu, Y ;
Fan, SS .
ADVANCED MATERIALS, 2005, 17 (13) :1652-+