Differential absorption lidar system employed for background atomic mercury vertical profiling in South China

被引:31
作者
Mei, Liang [1 ,3 ,4 ]
Zhao, Guangyu [1 ,2 ]
Svanberg, Sune [1 ,2 ,4 ]
机构
[1] S China Normal Univ, Zhejiang Univ, Joint Res Ctr Photon, Guangzhou 510006, Guangdong, Peoples R China
[2] S China Normal Univ, Ctr Opt & Electromagnet Res, Guangzhou 510006, Guangdong, Peoples R China
[3] Zhejiang Univ, Ctr Opt & Electromagnet Res, Hangzhou 310058, Zhejiang, Peoples R China
[4] Lund Univ, Royal Inst Technol, Zhejiang Univ, Joint Res Ctr Photon, Hangzhou 310058, Zhejiang, Peoples R China
关键词
Differential absorption lidar; DIAL; Atomic mercury; Oxygen; Pollutant; MICROWAVE-ASSISTED DIGESTION; PLASMA-MASS SPECTROMETRY; DIODE-LASER; ATMOSPHERIC MERCURY; FLUORESCENCE SPECTROMETRY; EMISSION-SPECTROMETRY; HYPERFINE-STRUCTURE; COMBUSTION EXHAUST; NITRIC-OXIDE; TRACE LEVELS;
D O I
10.1016/j.optlaseng.2013.10.028
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A differential absorption lidar (DIAL) system based on a Nd:YAG laser pumped narrow-band dye laser is developed and employed to monitor the atmospheric background concentration of atomic mercury in Guangzhou, South China. Atmospheric oxygen is also studied by using neighboring wavelengths to the mercury absorption line (253.7 nm), and is used to verify the operation of the DIAL system. A 24-hour continuous monitoring of background mercury concentration is performed and the average atomic mercury concentration below 330 m is between 5 ng/m(3) and 12 ng/m(3). (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:128 / 135
页数:8
相关论文
共 40 条
  • [1] Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm
    Alnis, J
    Gustafsson, U
    Somesfalean, G
    Svanberg, S
    [J]. APPLIED PHYSICS LETTERS, 2000, 76 (10) : 1234 - 1236
  • [2] Diode-laser-based sensor for ultraviolet absorption measurements of atomic mercury
    Anderson, T. N.
    Magnuson, J. K.
    Lucht, R. P.
    [J]. APPLIED PHYSICS B-LASERS AND OPTICS, 2007, 87 (02): : 341 - 353
  • [3] Combustion exhaust measurements of nitric oxide with an ultraviolet diode-laser-based absorption sensor
    Anderson, TN
    Lucht, RP
    Barron-Jimenez, R
    Hanna, SF
    Caton, JA
    Walther, T
    Roy, S
    Brown, MS
    Gord, JR
    Critchley, I
    Flamand, L
    [J]. APPLIED OPTICS, 2005, 44 (08) : 1491 - 1502
  • [4] Line strengths, A-factors and absorption cross-sections for fine structure lines in multiplets and hyperfine structure components in lines in atomic spectrometry -: a user's guide
    Axner, O
    Gustafsson, J
    Omenetto, N
    Winefordner, JD
    [J]. SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2004, 59 (01) : 1 - 39
  • [5] Cold-vapour atomic absorption spectrometry underestimates total mercury in blood and urine compared to inductively-coupled plasma mass spectrometry: an important factor for determining mercury reference intervals
    Chan, Michael H. M.
    Chan, Iris H. S.
    Kong, Alice P. S.
    Osaki, Risa
    Cheung, Robert C. K.
    Ho, Chung S.
    Wong, Gary W. K.
    Tong, Peter C. Y.
    Chan, Juliana C. N.
    Lam, Christopher W. K.
    [J]. PATHOLOGY, 2009, 41 (05) : 467 - 472
  • [6] Spatial distribution of mercury deposition fluxes in Wanshan Hg mining area, Guizhou province, China
    Dai, Z. H.
    Feng, X. B.
    Sommar, J.
    Li, P.
    Fu, X. W.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (14) : 6207 - 6218
  • [7] Daud N, 2011, INT J ELECTROCHEM SC, V6, P2798
  • [8] MOBILE REMOTE-SENSING SYSTEM FOR ATMOSPHERIC MONITORING
    EDNER, H
    FREDRIKSSON, K
    SUNESSON, A
    SVANBERG, S
    UNEUS, L
    WENDT, W
    [J]. APPLIED OPTICS, 1987, 26 (19): : 4330 - 4338
  • [9] ATMOSPHERIC ATOMIC MERCURY MONITORING USING DIFFERENTIAL ABSORPTION LIDAR TECHNIQUES
    EDNER, H
    FARIS, GW
    SUNESSON, A
    SVANBERG, S
    [J]. APPLIED OPTICS, 1989, 28 (05): : 921 - 930
  • [10] Toward real-time measurement of atmospheric mercury concentrations using cavity ring-down spectroscopy
    Fain, X.
    Moosmueller, H.
    Obrist, D.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (06) : 2879 - 2892