Standardized evaluation methodology and reference database for evaluating IVUS image segmentation

被引:106
作者
Balocco, Simone [1 ,2 ]
Gatta, Carlo [1 ]
Ciompi, Francesco [1 ,2 ]
Wahle, Andreas [3 ]
Radeva, Petia [1 ,2 ]
Carlier, Stephane [4 ]
Unal, Gozde [5 ]
Sanidas, Elias [6 ]
Mauri, Josepa [7 ]
Carillo, Xavier [7 ]
Kovarnik, Tomas [8 ]
Wang, Ching-Wei [9 ]
Chen, Hsiang-Chou [9 ]
Exarchos, Themis P. [10 ]
Fotiadis, Dimitrios I. [10 ]
Destrempes, Francois [11 ]
Cloutier, Guy [11 ,12 ]
Pujol, Oriol [2 ]
Alberti, Marina [1 ,2 ]
Mendizabal-Ruiz, E. Gerardo [13 ]
Rivera, Mariano [14 ]
Aksoy, Timur [5 ]
Downe, Richard W. [3 ]
Kakadiaris, Ioannis A. [13 ]
机构
[1] Comp Vis Ctr, Bellaterra, Spain
[2] Univ Barcelona, Dept Matemat Aplicada & Anal, Barcelona, Spain
[3] Univ Iowa, Dept Elect & Comp Engn, Iowa City, IA 52242 USA
[4] UZ Brussel, Dept Cardiol, Brussels, Belgium
[5] Sabanci Univ, Fac Engn & Nat Sci, Istanbul, Turkey
[6] Cardiovasc Res Fdn, New York, NY USA
[7] Hosp Badalona Germans Trias & Pujol, Badalona, Spain
[8] Charles Univ Prague, Dept Internal Med 2, Prague, Czech Republic
[9] Natl Taiwan Univ Sci & Technol, Taipei, Taiwan
[10] Univ Ioannina, Fdn Res & Technol Hellas, Inst Mol Biol & Biotechnol, Dept Biomed Res, GR-45110 Ioannina, Greece
[11] Univ Montreal, Hosp Res Ctr CRCHUM, Lab Biorheol & Med Ultrason, Montreal, PQ, Canada
[12] Univ Montreal, Inst Biomed Engn, Dept Radiol Radiooncol & Nucl Med, Montreal, PQ, Canada
[13] Univ Houston, Dept Comp Sci, Computat Biomed Lab, Houston, TX 77204 USA
[14] Ctr Invest Matemat, Guanajuato, Mexico
基金
美国国家卫生研究院; 加拿大自然科学与工程研究理事会;
关键词
IVUS (intravascular ultrasound); Evaluation framework; Algorithm comparison; Image segmentation; INTRAVASCULAR ULTRASOUND IMAGES; ADVENTITIA BORDER DETECTION; X-RAY ANGIOGRAPHY; AUTOMATIC SEGMENTATION; 3-DIMENSIONAL SEGMENTATION; QUANTITATIVE-ANALYSIS; LUMEN SEGMENTATION; SHEAR-STRESS; VESSEL; PLAQUE;
D O I
10.1016/j.compmedimag.2013.07.001
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper describes an evaluation framework that allows a standardized and quantitative comparison of IVUS lumen and media segmentation algorithms. This framework has been introduced at the MICCAI 2011 Computing and Visualization for (Intra)Vascular Imaging (CVII) workshop, comparing the results of eight teams that participated. We describe the available data-base comprising of multi-center, multi-vendor and multi-frequency IVUS datasets, their acquisition, the creation of the reference standard and the evaluation measures. The approaches address segmentation of the lumen, the media, or both borders; semi- or fully-automatic operation; and 2-D vs. 3-D methodology. Three performance measures for quantitative analysis have been proposed. The results of the evaluation indicate that segmentation of the vessel lumen and media is possible with an accuracy that is comparable to manual annotation when semi-automatic methods are used, as well as encouraging results can be obtained also in case of fully-automatic segmentation. The analysis performed in this paper also highlights the challenges in IVUS segmentation that remains to be solved. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:70 / 90
页数:21
相关论文
共 50 条
  • [41] An Adjustable Error Measure for Image Segmentation Evaluation
    Linares, Oscar Cuadros
    Botelho, Glenda
    Rodrigues, Francisco
    Neto, Joao Batista
    2015 28TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES, 2015, : 80 - 86
  • [42] An evaluation metric for image segmentation of multiple objects
    Polak, Mark
    Zhang, Hong
    Pi, Minghong
    IMAGE AND VISION COMPUTING, 2009, 27 (08) : 1223 - 1227
  • [43] Image segmentation evaluation: A survey of unsupervised methods
    Zhang, Hui
    Fritts, Jason E.
    Goldman, Sally A.
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2008, 110 (02) : 260 - 280
  • [44] A multidimensional segmentation evaluation for medical image data
    Cardenes, Ruben
    de Luis-Garcia, Rodrigo
    Bach-Cuadra, Meritxell
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2009, 96 (02) : 108 - 124
  • [45] Performance evaluation of preprocessing in color image segmentation
    Palus, H
    JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2005, 49 (06) : 583 - 587
  • [46] Automated performance evaluation of range image segmentation
    Min, J
    Powell, MW
    Bowyer, KW
    FIFTH IEEE WORKSHOP ON APPLICATIONS OF COMPUTER VISION, PROCEEDINGS, 2000, : 163 - 168
  • [47] Toward objective evaluation of image segmentation algorithms
    Unnikrishnan, Ranjith
    Pantofaru, Caroline
    Hebert, Martial
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (06) : 929 - 944
  • [48] Novel method of evaluating image segmentation algorithms based on activity degree
    Zheng X.
    Peng Z.-M.
    Xing Y.
    Zheng, Xin (zheng_xin2@sina.com), 1600, Editorial Board of Jilin University (46): : 311 - 317
  • [49] Evaluation of Segmentation Quality via Adaptive Composition of Reference Segmentations
    Peng, Bo
    Zhang, Lei
    Mou, Xuanqin
    Yang, Ming-Hsuan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (10) : 1929 - 1941
  • [50] Evaluation of some recent Image segmentation method's
    Tewari, Peeyush
    Surbhi, Prerna
    PROCEEDINGS OF THE 10TH INDIACOM - 2016 3RD INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT, 2016, : 3741 - 3747