Standardized evaluation methodology and reference database for evaluating IVUS image segmentation

被引:106
作者
Balocco, Simone [1 ,2 ]
Gatta, Carlo [1 ]
Ciompi, Francesco [1 ,2 ]
Wahle, Andreas [3 ]
Radeva, Petia [1 ,2 ]
Carlier, Stephane [4 ]
Unal, Gozde [5 ]
Sanidas, Elias [6 ]
Mauri, Josepa [7 ]
Carillo, Xavier [7 ]
Kovarnik, Tomas [8 ]
Wang, Ching-Wei [9 ]
Chen, Hsiang-Chou [9 ]
Exarchos, Themis P. [10 ]
Fotiadis, Dimitrios I. [10 ]
Destrempes, Francois [11 ]
Cloutier, Guy [11 ,12 ]
Pujol, Oriol [2 ]
Alberti, Marina [1 ,2 ]
Mendizabal-Ruiz, E. Gerardo [13 ]
Rivera, Mariano [14 ]
Aksoy, Timur [5 ]
Downe, Richard W. [3 ]
Kakadiaris, Ioannis A. [13 ]
机构
[1] Comp Vis Ctr, Bellaterra, Spain
[2] Univ Barcelona, Dept Matemat Aplicada & Anal, Barcelona, Spain
[3] Univ Iowa, Dept Elect & Comp Engn, Iowa City, IA 52242 USA
[4] UZ Brussel, Dept Cardiol, Brussels, Belgium
[5] Sabanci Univ, Fac Engn & Nat Sci, Istanbul, Turkey
[6] Cardiovasc Res Fdn, New York, NY USA
[7] Hosp Badalona Germans Trias & Pujol, Badalona, Spain
[8] Charles Univ Prague, Dept Internal Med 2, Prague, Czech Republic
[9] Natl Taiwan Univ Sci & Technol, Taipei, Taiwan
[10] Univ Ioannina, Fdn Res & Technol Hellas, Inst Mol Biol & Biotechnol, Dept Biomed Res, GR-45110 Ioannina, Greece
[11] Univ Montreal, Hosp Res Ctr CRCHUM, Lab Biorheol & Med Ultrason, Montreal, PQ, Canada
[12] Univ Montreal, Inst Biomed Engn, Dept Radiol Radiooncol & Nucl Med, Montreal, PQ, Canada
[13] Univ Houston, Dept Comp Sci, Computat Biomed Lab, Houston, TX 77204 USA
[14] Ctr Invest Matemat, Guanajuato, Mexico
基金
美国国家卫生研究院; 加拿大自然科学与工程研究理事会;
关键词
IVUS (intravascular ultrasound); Evaluation framework; Algorithm comparison; Image segmentation; INTRAVASCULAR ULTRASOUND IMAGES; ADVENTITIA BORDER DETECTION; X-RAY ANGIOGRAPHY; AUTOMATIC SEGMENTATION; 3-DIMENSIONAL SEGMENTATION; QUANTITATIVE-ANALYSIS; LUMEN SEGMENTATION; SHEAR-STRESS; VESSEL; PLAQUE;
D O I
10.1016/j.compmedimag.2013.07.001
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper describes an evaluation framework that allows a standardized and quantitative comparison of IVUS lumen and media segmentation algorithms. This framework has been introduced at the MICCAI 2011 Computing and Visualization for (Intra)Vascular Imaging (CVII) workshop, comparing the results of eight teams that participated. We describe the available data-base comprising of multi-center, multi-vendor and multi-frequency IVUS datasets, their acquisition, the creation of the reference standard and the evaluation measures. The approaches address segmentation of the lumen, the media, or both borders; semi- or fully-automatic operation; and 2-D vs. 3-D methodology. Three performance measures for quantitative analysis have been proposed. The results of the evaluation indicate that segmentation of the vessel lumen and media is possible with an accuracy that is comparable to manual annotation when semi-automatic methods are used, as well as encouraging results can be obtained also in case of fully-automatic segmentation. The analysis performed in this paper also highlights the challenges in IVUS segmentation that remains to be solved. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:70 / 90
页数:21
相关论文
共 50 条
  • [31] Standardized evaluation framework for evaluating coronary artery stenosis detection, stenosis quantification and lumen segmentation algorithms in computed tomography angiography
    Kirisli, H. A.
    Schaap, M.
    Metz, C. T.
    Dharampal, A. S.
    Meijboom, W. B.
    Papadopoulou, S. L.
    Dedic, A.
    Nieman, K.
    de Graaf, M. A.
    Meijs, M. F. L.
    Cramer, M. J.
    Broersen, A.
    Cetin, S.
    Eslami, A.
    Florez-Valencia, L.
    Lor, K. L.
    Matuszewski, B.
    Melki, I.
    Mohr, B.
    Oksuz, I.
    Shahzad, R.
    Wang, C.
    Kitslaar, P. H.
    Unal, G.
    Katouzian, A.
    Orkisz, M.
    Chen, C. M.
    Precioso, F.
    Najman, L.
    Masood, S.
    Unay, D.
    Van Vliet, L.
    Moreno, R.
    Goldenberg, R.
    Vucini, E.
    Krestin, G. P.
    Niessen, W. J.
    van Walsum, T.
    MEDICAL IMAGE ANALYSIS, 2013, 17 (08) : 859 - 876
  • [32] A A-IFSs Based Image Segmentation Methodology for Gait Analysis
    Couto, Pedro
    Filipe, Vitor
    Melo-Pinto, Pedro
    Bustince, Humberto
    Barrenechea, Edurne
    2009 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, 2009, : 1318 - +
  • [33] Supervised Segmentation of Remote Sensing Image Using Reference Descriptor
    Mei, Tiancan
    An, Le
    Li, Qun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (05) : 938 - 942
  • [35] Performance evaluation of image segmentation algorithms on microscopic image data
    Benes, Miroslav
    Zitova, Barbara
    JOURNAL OF MICROSCOPY, 2015, 257 (01) : 65 - 85
  • [36] A Learning-Based Framework for Supervised and Unsupervised Image Segmentation Evaluation
    Lin, Jian
    Peng, Bo
    Li, Tianrui
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2014, 14 (03)
  • [37] Evaluation of Deep Learning Architectures for Complex Immunofluorescence Nuclear Image Segmentation
    Kromp, Florian
    Fischer, Lukas
    Bozsaky, Eva
    Ambros, Inge M.
    Doerr, Wolfgang
    Beiske, Klaus
    Ambros, Peter F.
    Hanbury, Allan
    Taschner-Mandl, Sabine
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (07) : 1934 - 1949
  • [38] A quantitative evaluation measure for 3D biomedical image segmentation
    Kim, J
    Feng, DD
    Cai, TWD
    Eberl, S
    MODELLING AND CONTROL IN BIOMEDICAL SYSTEMS 2003 (INCLUDING BIOLOGICAL SYSTEMS), 2003, : 169 - 173
  • [39] Full-reference image quality assessment based on image segmentation with edge feature
    Shi, Zaifeng
    Zhang, Jiaping
    Cao, Qingjie
    Pang, Ke
    Luo, Tao
    SIGNAL PROCESSING, 2018, 145 : 99 - 105
  • [40] Learning a Sparse Database for Patch-Based Medical Image Segmentation
    Freiman, Moti
    Nickisch, Hannes
    Schmitt, Holger
    Maurovich-Horvat, Pal
    Donnelly, Patrick
    Vembar, Mani
    Goshen, Liran
    PATCH-BASED TECHNIQUES IN MEDICAL IMAGING (PATCH-MI 2017), 2017, 10530 : 47 - 54