hp-finite element simulations for Stokes flow -: stable and stabilized

被引:18
作者
Gerdes, K [1 ]
Schötzau, D
机构
[1] Chalmers Univ Technol, Dept Math, SE-41296 Gothenburg, Sweden
[2] ETH Zurich, Seminar Angew Math, CH-8092 Zurich, Switzerland
关键词
hp-FEM; Stokes problem; Galerkin formulation; Galerkin least squares formulation;
D O I
10.1016/S0168-874X(99)00018-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The stable Galerkin formulation and a stabilized Galerkin least squares formulation for the Stokes problem are analyzed in the context of the hp-version of the finite element method. Theoretical results for both formulations establish exponential rates of convergence under realistic assumptions on the input data. We confirm these results by a series of numerical experiments on an L-shaped domain where the solution exhibits corner singularities. (C) 1999 Elsevier Science B.V. All rights reserved. AMS classification: 65N30; 65N35; 65N50.
引用
收藏
页码:143 / 165
页数:23
相关论文
共 43 条
[11]  
Canuto C., 2012, Spectral Methods: Fundamentals in Single Domains
[12]   TOWARD A UNIVERSAL H-P ADAPTIVE FINITE-ELEMENT STRATEGY .1. CONSTRAINED APPROXIMATION AND DATA STRUCTURE [J].
DEMKOWICZ, L ;
ODEN, JT ;
RACHOWICZ, W ;
HARDY, O .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1989, 77 (1-2) :79-112
[13]  
Demkowicz L., 1998, Computing and Visualization in Science, V1, P145, DOI 10.1007/s007910050014
[14]  
DOUGLAS J, 1989, MATH COMPUT, V52, P495, DOI 10.1090/S0025-5718-1989-0958871-X
[15]  
Franca L. P., 1993, INCOMPRESSIBLE COMPU
[16]   ERROR ANALYSIS OF SOME GALERKIN LEAST-SQUARES METHODS FOR THE ELASTICITY EQUATIONS [J].
FRANCA, LP ;
STENBERG, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (06) :1680-1697
[17]  
Gervasio P, 1998, NUMER METH PART D E, V14, P115
[18]  
Girault V., 2012, FINITE ELEMENT METHO, V5
[19]   THE H-VERSION, P-VERSION AND H-P-VERSION OF THE FINITE-ELEMENT METHOD IN 1-DIMENSION .3. THE ADAPTIVE H-P-VERSION [J].
GUI, W ;
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1986, 49 (06) :613-657
[20]  
GUI W, 1986, NUMER MATH, V49, P659, DOI 10.1007/BF01389735