Diffusion MRI Spatial Super-Resolution Using Generative Adversarial Networks

被引:5
作者
Albay, Enes [1 ]
Demir, Ugur [1 ]
Unal, Gozde [1 ]
机构
[1] Istanbul Tech Univ, TR-34469 Istanbul, Turkey
来源
PREDICTIVE INTELLIGENCE IN MEDICINE | 2018年 / 11121卷
关键词
Magnetic resonance imaging (MRI); Diffusion MRI (dMRI); Super resolution; Generative adversarial networks (GANs);
D O I
10.1007/978-3-030-00320-3_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spatial resolution is one of the main constraints in diffusion Magnetic Resonance Imaging (dMRI). Increasing resolution leads to a decrease in SNR of the diffusion images. Acquiring high resolution images without reducing SNRs requires larger magnetic fields and long scan times which are typically not applicable in the clinical settings. Currently feasible voxel size is around 1 mm 3 for a diffusion image. In this paper, we present a deep neural network based post-processing method to increase the spatial resolution in diffusion MRI. We utilize Generative Adversarial Networks (GANs) to obtain a higher resolution diffusion MR image in the spatial dimension from lower resolution diffusion images. The obtained real data results demonstrate a first time proof of concept that GANs can be useful in super-resolution problem of diffusion MRI for upscaling in the spatial dimension.
引用
收藏
页码:155 / 163
页数:9
相关论文
共 20 条
[1]  
[Anonymous], 2016, DISTILL
[2]   Track density imaging (TDI): Validation of super resolution property [J].
Calamante, Fernando ;
Tournier, Jacques-Donald ;
Heidemann, Robin M. ;
Anwander, Alfred ;
Jackson, Graeme D. ;
Connelly, Alan .
NEUROIMAGE, 2011, 56 (03) :1259-1266
[3]   Multiple q-shell diffusion propagator imaging [J].
Descoteaux, Maxime ;
Deriche, Rachid ;
Le Bihan, Denis ;
Mangin, Jean-Francois ;
Poupon, Cyril .
MEDICAL IMAGE ANALYSIS, 2011, 15 (04) :603-621
[4]   Learning a Deep Convolutional Network for Image Super-Resolution [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 :184-199
[5]   Dipy, a library for the analysis of diffusion MRI data [J].
Garyfallidis, Eleftherios ;
Brett, Matthew ;
Amirbekian, Bagrat ;
Rokem, Ariel ;
van der Walt, Stefan ;
Descoteaux, Maxime ;
Nimmo-Smith, Ian .
FRONTIERS IN NEUROINFORMATICS, 2014, 8
[6]   Generative Adversarial Networks [J].
Goodfellow, Ian ;
Pouget-Abadie, Jean ;
Mirza, Mehdi ;
Xu, Bing ;
Warde-Farley, David ;
Ozair, Sherjil ;
Courville, Aaron ;
Bengio, Yoshua .
COMMUNICATIONS OF THE ACM, 2020, 63 (11) :139-144
[7]  
Isola Phillip., CoRR
[8]  
Johansen-Berg H, 2013, Diffusion MRI: From quantitative measurement to in vivo neuroanatomy
[9]   Perceptual Losses for Real-Time Style Transfer and Super-Resolution [J].
Johnson, Justin ;
Alahi, Alexandre ;
Li Fei-Fei .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :694-711
[10]  
King DB, 2015, ACS SYM SER, V1214, P1