Attention-Augmented Convolutional Autoencoder for Radar-Based Human Activity Recognition

被引:0
作者
Campbell, Christopher [1 ]
Ahmad, Fauzia [1 ]
机构
[1] Temple Univ, Dept Elect & Comp Engn, Philadelphia, PA 19122 USA
来源
2020 IEEE INTERNATIONAL RADAR CONFERENCE (RADAR) | 2020年
关键词
Human activity recognition; micro-Doppler; machine learning; latent-variable models; unsupervised learning; CLASSIFICATION; SIGNATURES;
D O I
10.1109/radar42522.2020.9114787
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose an attention-augmented convolutional autoencoder for human activity recognition using radar micro Doppler signatures. We use attention to overcome the limited receptive field of convolutional autoencoders (CAE), thereby enabling them to learn global information in addition to spatially localized features, while preserving their unsupervised pretraining characteristic. The augmentation is accomplished by concatenating convolutional local-feature maps with a set of attention feature maps that capture global dependencies. Using real data measurements of falls and activities of daily living, we demonstrate that the incorporation of the attention mechanism yields superior classification accuracy with respect to training sample size, compared to the conventional CAE.
引用
收藏
页码:990 / 995
页数:6
相关论文
共 31 条
[1]   Radar Signal Processing for Elderly Fall Detection The future for in-home monitoring [J].
Amin, Moeness G. ;
Zhang, Yimin D. ;
Ahmad, Fauzia ;
Ho, K. C. .
IEEE SIGNAL PROCESSING MAGAZINE, 2016, 33 (02) :71-80
[2]  
[Anonymous], 2014, Radar micro-Doppler signatures
[3]  
Bahdanau D, 2016, Arxiv, DOI [arXiv:1409.0473, DOI 10.48550/ARXIV.1409.0473]
[4]   Deep convolutional networks do not classify based on global object shape [J].
Baker, Nicholas ;
Lu, Hongjing ;
Erlikhman, Gennady ;
Kellman, Philip J. .
PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (12)
[5]  
Bello I., 2019, ARXIV COMPUTER VISIO
[6]   LEARNING LONG-TERM DEPENDENCIES WITH GRADIENT DESCENT IS DIFFICULT [J].
BENGIO, Y ;
SIMARD, P ;
FRASCONI, P .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (02) :157-166
[7]   Radar classification of indoor targets using support vector machines [J].
Bufler, Travis D. ;
Narayanan, Ram M. .
IET RADAR SONAR AND NAVIGATION, 2016, 10 (08) :1468-1476
[8]  
Cammenga ZA, 2015, IEEE RAD CONF, P1038, DOI 10.1109/RADAR.2015.7131147
[9]   Personnel Recognition and Gait Classification Based on Multistatic Micro-Doppler Signatures Using Deep Convolutional Neural Networks [J].
Chen, Zhaoxi ;
Li, Gang ;
Fioranelli, Francesco ;
Griffiths, Hugh .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (05) :669-673
[10]   Automatic Data-Driven Frequency-Warped Cepstral Feature Design for Micro-Doppler Classification [J].
Erol, Baris ;
Amin, Moeness G. ;
Gurbuz, Sevgi Zubeyde .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2018, 54 (04) :1724-1738