Coarse-grained molecular simulations of the melting kinetics of small unilamellar vesicles

被引:16
|
作者
Patel, Lara A. [1 ]
Kindt, James T. [1 ]
机构
[1] Emory Univ, Dept Chem, 1515 Dickey Dr, Atlanta, GA 30322 USA
基金
美国国家科学基金会;
关键词
PHASE DIPALMITOYLPHOSPHATIDYLCHOLINE; PHOSPHOLIPID-BILAYERS; LECITHIN BILAYERS; LIPID-BILAYERS; MODEL; DYNAMICS; GEL; GROMACS; PERMEABILITY; MORPHOLOGY;
D O I
10.1039/c5sm02560e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Simulations of small unilamellar lipid bilayer vesicles have been performed to model their response to an instantaneous rise in temperature, starting from an initial low-temperature structure, to temperatures near or above the main chain transition temperature. The MARTINI coarse-grained force-field was used to construct slabs of gel-phase DPPC bilayers, which were assembled into truncated icosahedral structures containing 13 165 or 31021 lipids. Equilibration at 280 K produced structures with several (5-8) domains, characterized by facets of lipids packed in the gel phase connected by disordered ridges. Instantaneous heating to final temperatures ranging from 290 K to 310 K led to partial or total melting over 500 ns trajectories, accompanied by changes in vesicle shape and the sizes and arrangements of remaining gel-phase domains. At temperatures that produced partial melting, the gel-phase lipid content of the vesicles followed an exponential decay, similar in form and timescale to the sub-microsecond phase of melting kinetics observed in recent ultrafast IR temperature-jump experiments. The changing rate of melting appears to be the outcome of a number of competing contributions, but changes in curvature stress arising from the expansion of the bilayer area upon melting are a major factor. The simulations give a more detailed picture of the changes that occur in frozen vesicles following a temperature jump, which will be of use for the interpretation of temperature-jump experiments on vesicles.
引用
收藏
页码:1765 / 1777
页数:13
相关论文
共 50 条
  • [1] Effective interaction between small unilamellar vesicles as probed by coarse-grained molecular dynamics simulations
    Shinoda, Wataru
    Klein, Michael L.
    PURE AND APPLIED CHEMISTRY, 2014, 86 (02) : 215 - 222
  • [2] Spreading of a Unilamellar Liposome on Charged Substrates: A Coarse-Grained Molecular Simulation
    Kong, Xian
    Lu, Diannan
    Wu, Jianzhong
    Liu, Zheng
    LANGMUIR, 2016, 32 (15) : 3785 - 3793
  • [3] Coarse-grained molecular dynamics simulations of clay compression
    Bandera, Sara
    O'Sullivan, Catherine
    Tangney, Paul
    Angioletti-Uberti, Stefano
    COMPUTERS AND GEOTECHNICS, 2021, 138 (138)
  • [4] DPPC-cholesterol phase diagram using coarse-grained Molecular Dynamics simulations
    Wang, Yin
    Gkeka, Paraskevi
    Fuchs, Julian E.
    Liedl, Klaus R.
    Cournia, Zoe
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2016, 1858 (11): : 2846 - 2857
  • [5] Coarse-grained simulations of membranes under tension
    Neder, Joerg
    West, Beate
    Nielaba, Peter
    Schmid, Friederike
    JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (11)
  • [6] Coarse-Grained Molecular Dynamics Simulations of Membrane Trehalose Interactions
    Kapla, Jon
    Stevensson, Baltzar
    Maliniak, Arnold
    JOURNAL OF PHYSICAL CHEMISTRY B, 2016, 120 (36) : 9621 - 9631
  • [7] Improved Angle Potentials for Coarse-Grained Molecular Dynamics Simulations
    Bulacu, Monica
    Goga, Nicolae
    Zhao, Wei
    Rossi, Giulia
    Monticelli, Luca
    Periole, Xavier
    Tieleman, D. Peter
    Marrink, Siewert J.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (08) : 3282 - 3292
  • [8] Coarse-grained molecular dynamics simulations of photoswitchable assembly and disassembly
    Zheng, Xiaoyan
    Wang, Dong
    Shuai, Zhigang
    NANOSCALE, 2013, 5 (09) : 3681 - 3689
  • [9] Peroxidised phospholipid bilayers: insight from coarse-grained molecular dynamics simulations
    Guo, Yachong
    Baulin, Vladimir A.
    Thalmann, Fabrice
    SOFT MATTER, 2016, 12 (01) : 263 - 271
  • [10] Deciphering Ethanol-Driven Swelling, Rupturing, Aggregation, and Fusion of Lipid Vesicles Using Coarse-Grained Molecular Dynamics Simulations
    Shobhna
    Kashyap, Hemant K.
    LANGMUIR, 2022, 38 (08) : 2445 - 2459