Human-derived Organ-on-a-Chip for Personalized Drug Development

被引:76
作者
Jodat, Yasamin A. [1 ,2 ]
Kang, Min G. [3 ]
Kiaee, Kiavash [1 ,2 ]
Kim, Gyeong J. [3 ]
Martinez, Angel F. H. [1 ,4 ]
Rosenkranz, Aliza [1 ]
Bae, Hojae [5 ]
Shin, Su R. [1 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Div Engn Med, Cambridge, MA 02139 USA
[2] Stevens Inst Technol, Dept Mech Engn, Hoboken, NJ 07030 USA
[3] Konkuk Univ, Coll Anim Biosci & Technol, Dept Bioind Technol, Seoul 05029, South Korea
[4] Anahuac Univ, Sch Med, Alpha Med Leadership Program, Mexico City 52786, DF, Mexico
[5] Konkuk Univ, KU Convergence Sci & Technololgy Inst, Dept Stem Cell & Regenerat Biotechnol, Seoul 05029, South Korea
基金
新加坡国家研究基金会; 美国国家卫生研究院;
关键词
Organ-on-a-chip; microfluidic technology; drug development; personalized medicine; human-derived induced pluripotent stem cells; tissue engineering; PLURIPOTENT STEM-CELLS; IN-VITRO MODEL; MICROFLUIDIC PLATFORM; SKELETAL-MUSCLE; MOUSE MODELS; LOW-COST; LIVER; CULTURE; SYSTEMS; TOXICITY;
D O I
10.2174/1381612825666190308150055
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
To reduce the required capital and time investment in the development of new pharmaceutical agents, there is an urgent need for preclinical drug testing models that are predictive of drug response in human tissues or organs. Despite tremendous advancements and rigorous multistage screening of drug candidates involving computational models, traditional cell culture platforms, animal models and most recently humanized animals, there is still a large deficit in our ability to predict drug response in patient groups and overall attrition rates from phase 1 through phase 4 of clinical studies remain well above 90%. Organ-on-a-chip (OOC) platforms have proven potential in providing tremendous flexibility and robustness in drug screening and development by employing engineering techniques and materials. More importantly, in recent years, there is a clear upward trend in studies that utilize human-induced pluripotent stem cell (hiPSC) to develop personalized tissue or organ models. Additionally, integrated multiple organs on the single chip with increasingly more sophisticated representation of absorption, distribution, metabolism, excretion and toxicity (ADMET) process are being utilized to better understand drug interaction mechanisms in the human body and thus showing great potential to better predict drug efficacy and safety. In this review, we summarize these advances, highlighting studies that took the next step to clinical trials and research areas with the utmost potential and discuss the role of the OOCs in the overall drug discovery process at a preclinical and clinical stage, as well as outline remaining challenges.
引用
收藏
页码:5471 / 5486
页数:16
相关论文
共 50 条
[41]   Organ-on-a-chip model of vascularized human bone marrow niches [J].
Glaser, Drew E. ;
Curtis, Matthew B. ;
Sariano, Peter A. ;
Rollins, Zachary A. ;
Shergill, Bhupinder S. ;
Anand, Aravind ;
Deely, Alyssa M. ;
Shirure, Venktesh S. ;
Anderson, Leif ;
Lowen, Jeremy M. ;
Ng, Natalie R. ;
Weilbaecher, Katherine ;
Link, Daniel C. ;
George, Steven C. .
BIOMATERIALS, 2022, 280
[42]   Organ-on-a-chip models for development of cancer immunotherapies [J].
Chernyavska, M. ;
Masoudnia, M. ;
Valerius, T. ;
Verdurmen, W. P. R. .
CANCER IMMUNOLOGY IMMUNOTHERAPY, 2023, 72 (12) :3971-3983
[43]   Tackling Current Biomedical Challenges With Frontier Biofabrication and Organ-On-A-Chip Technologies [J].
Celikkin, Nehar ;
Presutti, Dario ;
Maiullari, Fabio ;
Fornetti, Ersilia ;
Agarwal, Tarun ;
Paradiso, Alessia ;
Volpi, Marina ;
Swieszkowski, Wojciech ;
Bearzi, Claudia ;
Barbetta, Andrea ;
Zhang, Yu Shrike ;
Gargioli, Cesare ;
Rizzi, Roberto ;
Costantini, Marco .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2021, 9
[44]   Organ-on-a-Chip for Drug Screening: A Bright Future for Sustainability? A Critical Review [J].
Feitor, Jessica F. ;
Brazaca, Lais C. ;
Lima, Amanda M. ;
Ferreira, Vinicius G. ;
Kassab, Giulia ;
Bagnato, Vanderlei S. ;
Carrilho, Emanuel ;
Cardoso, Daniel R. .
ACS BIOMATERIALS SCIENCE & ENGINEERING, 2023, 9 (05) :2220-2234
[45]   3D organ-on-a-chip: The convergence of microphysiological systems and organoids [J].
Baptista, Leandra S. ;
Porrini, Constance ;
Kronemberger, Gabriela S. ;
Kelly, Daniel J. ;
Perrault, Cecile M. .
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2022, 10
[46]   A guide to the organ-on-a-chip [J].
Leung, Chak Ming ;
de Haan, Pim ;
Ronaldson-Bouchard, Kacey ;
Kim, Ge-Ah ;
Ko, Jihoon ;
Rho, Hoon Suk ;
Chen, Zhu ;
Habibovic, Pamela ;
Li Jeon, Noo ;
Takayama, Shuichi ;
Shuler, Michael L. ;
Vunjak-Novakovic, Gordana ;
Frey, Olivier ;
Verpoorte, Elisabeth ;
Toh, Yi-Chin .
NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01)
[47]   Organ-on-a-chip and the kidney [J].
Kim, Sejoong ;
Takayama, Shuichi .
KIDNEY RESEARCH AND CLINICAL PRACTICE, 2015, 34 (03) :165-169
[48]   Recent advances in an organ-on-a-chip: biomarker analysis and applications [J].
Li, Xian ;
Tian, Tian .
ANALYTICAL METHODS, 2018, 10 (26) :3122-3130
[49]   Integrating mechanical sensor readouts into organ-on-a-chip platforms [J].
Morales, Ingrid Anaya ;
Boghdady, Christina-Marie ;
Campbell, Benjamin E. E. ;
Moraes, Christopher .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
[50]   A Comprehensive Review of Organ-on-a-Chip Technology and Its Applications [J].
Doost, Negar Farhang ;
Srivastava, Soumya K. .
BIOSENSORS-BASEL, 2024, 14 (05)