Distinguishing brain inflammation from grade II glioma in population without contrast enhancement: a radiomics analysis based on conventional MRI

被引:26
作者
Han, Yu [1 ,2 ]
Yang, Yang [1 ,2 ]
Shi, Zhe-sheng [3 ]
Zhang, An-ding [3 ]
Yan, Lin-feng [1 ,2 ]
Hu, Yu-chuan [1 ,2 ]
Feng, Lan-lan [4 ]
Ma, Jiao [4 ]
Wang, Wen [1 ,2 ]
Cui, Guang-bin [1 ,2 ]
机构
[1] Fourth Mil Med Univ, Tangdu Hosp, Dept Radiol, 569 Xinsi Rd, Xian 710038, Shaanxi, Peoples R China
[2] Fourth Mil Med Univ, Tangdu Hosp, Funct & Mol Imaging Key Lab Shaanxi Prov, 569 Xinsi Rd, Xian 710038, Shaanxi, Peoples R China
[3] Fourth Mil Med Univ, Coll Basic Med, Xian 710032, Shaanxi, Peoples R China
[4] Fourth Mil Med Univ, Tangdu Hosp, Dept Pathol, Xian 710038, Peoples R China
关键词
Radiomics; Inflammation; Glioma; Magnetic resonance imaging (MRI); TUMEFACTIVE DEMYELINATING LESIONS; DIFFERENTIAL-DIAGNOSIS; LIMBIC ENCEPHALITIS; GLIOBLASTOMA; FEATURES; PREDICTION;
D O I
10.1016/j.ejrad.2020.109467
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: In populations without contrast enhancement, the imaging features of atypical brain parenchyma inflammations can mimic those of grade II gliomas. The aim of this study was to assess the value of the conventional MR-based radiomics signature in differentiating brain inflammation from grade II glioma. Methods: Fifty-seven patients (39 patients with grade II glioma and 18 patients with inflammation) were divided into primary (n = 44) and validation cohorts (n = 13). Radiomics features were extracted from T-1-weighted images (T1WI) and T-2 -weighted images (T2WI). Two-sample t-test and least absolute shrinkage and selection operator (LASSO) regression were adopted to select features and build radiomics signature models for discriminating inflammation from glioma. The predictive performance of the models was evaluated via area under the receiver operating characteristic curve (AUC) and compared with the radiologists' assessments. Results: Based on the primary cohort, we developed T1WI, T2WI and combination (T1WI + T2WI) models for differentiating inflammation from glioma with 4, 8, and 5 radiomics features, respectively. Among these models, T2WI and combination models achieved better diagnostic efficacy, with AUC of 0.980, 0.988 in primary cohort and that of 0.950, 0.925 in validation cohort, respectively. The AUCs of radiologist 1's and 2's assessments were 0.661 and 0.722, respectively. Conclusion: The signature based on radiomics features helps to differentiate inflammation from grade II glioma and improved performance compared with experienced radiologists, which could potentially be useful in clinical practice.
引用
收藏
页数:10
相关论文
共 37 条
[1]   Artificial intelligence in cancer imaging: Clinical challenges and applications [J].
Bi, Wenya Linda ;
Hosny, Ahmed ;
Schabath, Matthew B. ;
Giger, Maryellen L. ;
Birkbak, Nicolai J. ;
Mehrtash, Alireza ;
Allison, Tavis ;
Arnaout, Omar ;
Abbosh, Christopher ;
Dunn, Ian F. ;
Mak, Raymond H. ;
Tamimi, Rulla M. ;
Tempany, Clare M. ;
Swanton, Charles ;
Hoffmann, Udo ;
Schwartz, Lawrence H. ;
Gillies, Robert J. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) :127-157
[2]   MR approaches in neurodegenerative disorders [J].
Blamire, Andrew M. .
PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY, 2018, 108 :1-16
[3]   Differentiation of true-progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide by GLCM texture analysis.of conventional MRI [J].
Chen, Xin ;
Wei, Xinhua ;
Zhang, Zhongping ;
Yang, Ruimeng ;
Zhu, Yanjie ;
Jiang, Xinqing .
CLINICAL IMAGING, 2015, 39 (05) :775-780
[4]   An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging [J].
Drabycz, Sylvia ;
Roldan, Gloria ;
de Robles, Paula ;
Adler, Daniel ;
McIntyre, John B. ;
Magliocco, Anthony M. ;
Cairncross, J. Gregory ;
Mitchell, J. Ross .
NEUROIMAGE, 2010, 49 (02) :1398-1405
[5]   Imaging practice in low-grade gliomas among European specialized centers and proposal for a minimum core of imaging [J].
Freyschlag, Christian F. ;
Krieg, Sandro M. ;
Kerschbaumer, Johannes ;
Pinggera, Daniel ;
Forster, Marie-Therese ;
Cordier, Dominik ;
Rossi, Marco ;
Miceli, Gabriele ;
Roux, Alexandre ;
Reyes, Andres ;
Sarubbo, Silvio ;
Smits, Anja ;
Sierpowska, Joanna ;
Robe, Pierre A. ;
Rutten, Geert-Jan ;
Santarius, Thomas ;
Matys, Tomasz ;
Zanello, Marc ;
Almairac, Fabien ;
Mondot, Lydiane ;
Jakola, Asgeir S. ;
Zetterling, Maria ;
Rofes, Adria ;
von Campe, Gord ;
Guillevin, Remy ;
Bagatto, Daniele ;
Lubrano, Vincent ;
Rapp, Marion ;
Goodden, John ;
Hamer, Philip C. De Witt ;
Pallud, Johan ;
Bello, Lorenzo ;
Thome, Claudius ;
Duffau, Hugues ;
Mandonnet, Emmanuel .
JOURNAL OF NEURO-ONCOLOGY, 2018, 139 (03) :699-711
[6]  
Galloway M.M., 1975, Comput. Graph. Image Process, V4, P172, DOI DOI 10.1016/S0146-664X(75)80008-6
[7]   MR-based radiomics signature in differentiating ocular adnexal lymphoma from idiopathic orbital inflammation [J].
Guo, Jian ;
Liu, Zhenyu ;
Shen, Chen ;
Li, Zheng ;
Yan, Fei ;
Tian, Jie ;
Xian, Junfang .
EUROPEAN RADIOLOGY, 2018, 28 (09) :3872-3881
[8]   Structural and advanced imaging in predicting MGMT promoter methylation of primary glioblastoma: a region of interest based analysis [J].
Han, Yu ;
Yan, Lin-Feng ;
Wang, Xi-Bin ;
Sun, Ying-Zhi ;
Zhang, Xin ;
Liu, Zhi-Cheng ;
Nan, Hai-Yan ;
Hu, Yu-Chuan ;
Yang, Yang ;
Zhang, Jin ;
Yu, Ying ;
Sun, Qian ;
Tian, Qiang ;
Hu, Bo ;
Xiao, Gang ;
Wang, Wen ;
Cui, Guang-Bin .
BMC CANCER, 2018, 18
[9]   Combining Diffusion Tensor Metrics and DSC Perfusion Imaging: Can It Improve the Diagnostic Accuracy in Differentiating Tumefactive Demyetination from High-Grade Glioma? [J].
Hiremath, S. B. ;
Muraleedharan, A. ;
Kumar, S. ;
Nagesh, C. ;
Kesavadas, C. ;
Abraham, M. ;
Kapilamoorthy, T. R. ;
Thomas, B. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2017, 38 (04) :685-690
[10]   Outcome Prediction in Patients with Glioblastoma by Using Imaging, Clinical, and Genomic Biomarkers: Focus on the Nonenhancing Component of the Tumor [J].
Jain, Rajan ;
Poisson, Laila M. ;
Gutman, David ;
Scarpace, Lisa ;
Hwang, Scott N. ;
Holder, Chad A. ;
Wintermark, Max ;
Rao, Arvind ;
Colen, Rivka R. ;
Kirby, Justin ;
Freymann, John ;
Jaffe, C. Carl ;
Mikkelsen, Tom ;
Flanders, Adam .
RADIOLOGY, 2014, 272 (02) :484-493