CONNECTEDNESS OF THE MODULI OF Sp(2p, 2q)-HIGGS BUNDLES

被引:4
作者
Garcia-Prada, Oscar [1 ]
Oliveira, Andre G. [2 ]
机构
[1] CSIC UAM UC3M UCM, Inst Ciencias Matemat, Madrid 28049, Spain
[2] Univ Tras Os Montes & Alto Douro, Dept Matemat, P-5000911 Vila Real, Portugal
关键词
SURFACE GROUP-REPRESENTATIONS; SELF-DUALITY EQUATIONS; PRINCIPAL BUNDLES; ALGEBRAIC-CURVES; RIEMANN SURFACE; HIGGS BUNDLES; SPACES; PAIRS;
D O I
10.1093/qmath/hat045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the Morse-theoretic techniques introduced by Hitchin, we prove that the moduli space of Sp(2p, 2q)-Higgs bundles over a compact Riemann surface of genus g >= 2 is connected. In particular, this implies that the moduli space of representations of the fundamental group of the surface in Sp(2p, 2q) is connected.
引用
收藏
页码:931 / 956
页数:26
相关论文
共 33 条
[32]   Constraints on the onset of color transparency from quasielastic 12C(e, e'p) up to Q2=14.2 (GeV/c)2 [J].
Bhetuwal, D. ;
Matter, J. ;
Szumila-Vance, H. ;
Gayoso, C. Ayerbe ;
Kabir, M. L. ;
Dutta, D. ;
Ent, R. ;
Abrams, D. ;
Ahmed, Z. ;
Aljawrneh, B. ;
Alsalmi, S. ;
Ambrose, R. ;
Androic, D. ;
Armstrong, W. ;
Asaturyan, A. ;
Assumin-Gyimah, K. ;
Bandari, A. ;
Basnet, S. ;
Berdnikov, V. ;
Bhatt, H. ;
Biswas, D. ;
Boeglin, W. U. ;
Bosted, P. ;
Brash, E. ;
Bukhari, M. H. S. ;
Chen, H. ;
Chen, J. P. ;
Chen, M. ;
Christy, E. M. ;
Covrig, S. ;
Craycraft, K. ;
Danagoulian, S. ;
Day, D. ;
Diefenthaler, M. ;
Dlamini, M. ;
Dunne, J. ;
Duran, B. ;
Evans, R. ;
Fenker, H. ;
Fomin, N. ;
Fuchey, E. ;
Gaskell, D. ;
Gautam, T. N. ;
Gonzalez, F. A. ;
Hansen, J. O. ;
Hauenstein, F. ;
Hernandez, A. ;
Horn, T. ;
Huber, G. M. ;
Jones, M. K. .
PHYSICAL REVIEW C, 2023, 108 (02)
[33]   Some Aspects of Lw1r (G) ∧ L(p, q, w2dμ) (G) [J].
Eryilmaz, Ilker ;
Duyar, Cenap .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2009, 30 (03) :311-320