Computational cost of the Fekete problem I: The Forces Method on the 2-sphere

被引:12
作者
Bendito, E. [1 ]
Carmona, A. [1 ]
Encinas, A. M. [1 ]
Gesto, J. M. [1 ]
Gomez, A. [2 ]
Mourino, C. [2 ]
Sanchez, M. T. [2 ]
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 3, Barcelona, Spain
[2] CESGA, Fdn Ctr Tecnol Supercomputac Galicia, Santiago De Compostela, Spain
关键词
Fekete points; Computational complexity; Nonlinear optimization; GLOBAL OPTIMIZATION; SETS; POINTS; ENERGY;
D O I
10.1016/j.jcp.2009.01.021
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Here, we study the computational complexity of the Fekete point problem. Namely, we give an exhaustive description of the main properties of an algorithm for the minimization of the logarithmic potential energy on the 2-sphere, and we characterize the probability distribution of the cost of the different minima. In particular, we show that a local minimum can be found with an average cost of about O(N-2.8). (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:3288 / 3306
页数:19
相关论文
共 31 条
[1]  
BENDITO A, COMPUTATIONAL COST F, V2
[2]   Estimation of Fekete points [J].
Bendito, E. ;
Carmona, A. ;
Encinas, A. M. ;
Gesto, J. M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 225 (02) :2354-2376
[3]   A walk through energy, discrepancy, numerical integration and group invariant measures on measurable subsets of euclidean space [J].
Damelin, S. B. .
NUMERICAL ALGORITHMS, 2008, 48 (1-3) :213-235
[4]   Corrigendum to "Energy functionals, numerical integration and asymptotic equidistribution on the sphere" (vol 19, pg 231, 2003) [J].
Damelin, SB ;
Grabner, PJ .
JOURNAL OF COMPLEXITY, 2004, 20 (06) :883-884
[5]  
DAMELIN SB, 2006, J COMPLEXITY, V21, P863
[6]   Minimal discrete energy problems and numerical integration on compact sets in euclidean spaces [J].
Damelin, Steven B. ;
Maymeskul, Viktor .
ALGORITHMS FOR APPROXIMATION, PROCEEDINGS, 2007, :369-+
[7]   METHOD OF CONSTRAINED GLOBAL OPTIMIZATION - COMMENT [J].
ERBER, T ;
HOCKNEY, GM .
PHYSICAL REVIEW LETTERS, 1995, 74 (08) :1482-1482
[9]   The distribution of points on the sphere and corresponding cubature formulae [J].
Fliege, J ;
Maier, U .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1999, 19 (02) :317-334
[10]  
GESTO JM, 2008, THESIS U POLITECNICA