Chaos in three-body dynamics:: Kolmogorov-Sinai entropy

被引:7
作者
Heinämäki, P
Lehto, HJ
Valtonen, MJ
Chernin, AD
机构
[1] Turku Univ, Tuorla Observ, Piikkio 21500, Finland
[2] Turku Univ, Dept Phys, Piikkio 21500, Finland
[3] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Moscow 119899, Russia
关键词
chaos; instabilities;
D O I
10.1046/j.1365-8711.1999.02859.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
An ensemble of Newtonian three-body models with close initial separations is investigated by following the evolution of a 'drop' in the homology map. The onset of chaos is revealed by the motion and the complex temporal deformation of the drop. In the state of advanced chaos, the drop spreads over almost the whole homology map, quite independently of its initial position on the map. A general quantitative measure of this process is the mean exponential rate of spreading, which bears resemblance to Kolmogorov-Sinai entropy; this is introduced and estimated in terms of the homology mapping. In a similar manner we also estimate the mean exponential rate of divergence of initially close-by trajectories. This is a close analogue to the Lyapunov exponent. These parameters measure two complementary aspects of dynamical instability, which is the basic mechanism of the onset of chaos.
引用
收藏
页码:811 / 822
页数:12
相关论文
共 21 条
[1]  
Agekyan T.A., 1967, Soviet Phys. Astron., V44, P1261
[2]  
Arnold V. I., 1978, Mathematical methods of classical mechanics
[3]  
Chernin A. D., 1998, New Astronomy Reviews, V42, P41, DOI 10.1016/S1387-6473(98)00021-9
[4]   Three-body dynamics: intermittent chaos with strange attractor [J].
Heinamaki, P ;
Lehto, HJ ;
Valtonen, MJ ;
Chernin, AD .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1998, 298 (03) :790-796
[5]  
Ivanov A. V., 1995, Astronomy Reports, V39, P368
[6]  
IVANOV AV, 1991, SOV ASTRON LETT+, V17, P243
[7]  
KOLMOGOROV AN, 1959, DOKL AKAD NAUK SSSR+, V124, P754
[8]  
KOLMOGOROV AN, 1958, DOKL AKAD NAUK SSSR+, V119, P861
[9]  
Lichtenberg A.J., 1992, Regular and Chaotic Dynamics
[10]  
Ott E., 1993, CHAOS DYNAMICAL SYST