A NOTE ON THE COEXISTENCE OF HOMOCLINIC ORBIT AND SADDLE FOCUS POINT FOR SOME TYPICAL CHAOTIC SYSTEMS

被引:0
作者
Xie, Lingli [1 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
来源
DYNAMIC SYSTEMS AND APPLICATIONS | 2014年 / 23卷 / 2-3期
基金
中国国家自然科学基金;
关键词
LORENZ SYSTEM; EXISTENCE; APPROXIMATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The coexistence of homoclinic orbit and saddle focus point is the basic assumption in Shil'nikov homoclinic theorem. We attempt to study the existence of homoclinic orbit to saddle focus point and give the necessary conditions for it. Firstly, the geometrical properties of homoclinic orbit to saddle focus point are exposed by some lemmas which are used to drive the main theorem. Consequently, the necessary conditions for the existence of homoclinic orbit to saddle focus point are obtained. The result is applied to Lorenz-type systems. Finally, the conclusions for some typical chaotic systems is presented.
引用
收藏
页码:305 / 315
页数:11
相关论文
共 17 条
  • [1] Comment on "Sil'nikov chaos of the Liu system" [Chaos 18, 013113 (2008)]
    Algaba, Antonio
    Fernandez-Sanchez, Fernando
    Merino, Manuel
    Rodriguez-Luis, Alejandro J.
    [J]. CHAOS, 2011, 21 (04)
  • [2] [Anonymous], 1965, Sov. Math. Doklady
  • [3] [Anonymous], J DYN DIFF EQU
  • [4] [Anonymous], 1993, BIFURCATION CHAOS TH
  • [5] General existence conditions of homoclinic trajectories in dissipative systems. Lorenz, Shimizu-Morioka, Lu and Chen systems
    Leonov, G. A.
    [J]. PHYSICS LETTERS A, 2012, 376 (45) : 3045 - 3050
  • [6] Bounds for attractors and the existence of homoclinic orbits in the Lorenz system
    Leonov, GA
    [J]. PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2001, 65 (01): : 19 - 32
  • [7] n-dimensional stable and unstable manifolds of hyperbolic singular point
    Li Yanhui
    Zhu Siming
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 29 (05) : 1155 - 1164
  • [8] Mefrano-T R. O., 2006, CHAOS, V16
  • [9] Sandstede B, 1997, IMA J NUMER ANAL, V17, P437, DOI 10.1093/imanum/17.3.437
  • [10] Shil'nikov L. P., 1998, METHOD QUALITATIVE 1