Preparation of Sn-doped 2-3 nm Ni nanoparticles supported on SiO2\ via surface organometallic chemistry for low temperature dry reforming catalyst: The effect of tin doping on activity, selectivity and stability

被引:20
作者
Baudouin, David [1 ,2 ]
Candy, Jean-Pierre [1 ]
Rodemerck, Uwe [3 ]
Krumeich, Frank [2 ]
Veyre, Laurent [1 ]
Webb, Paul B. [4 ]
Thieuleux, Chloe [1 ]
Coperet, Christophe [1 ,2 ]
机构
[1] Univ Lyon, Inst Chim Lyon, CPE Lyon, F-69616 Villeurbanne, France
[2] Swiss Fed Inst Technol, Dept Chem, CH-8093 Zurich, Switzerland
[3] Univ Rostock, Leibniz Inst Catalysis, D-18059 Rostock, Germany
[4] Sasol Technol UK Ltd, St Andrews KY16 9ST, Fife, Scotland
关键词
Nickel nanoparticles; tin alloy; Silica supported; Carbon dioxide reforming of methane; Selective poisoning; CARBON-DIOXIDE; PARTICLE-SIZE; METHANE; METALS; HYDROGEN; CH4; CO2; NI/ALPHA-AL2O3; PROMOTION; COKING;
D O I
10.1016/j.cattod.2014.03.014
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Silica supported nickel nanoparticles of 2.2 +/- 0.4 nm diameter were selectively doped with tin by surface organometallic chemistry while keeping the particle size nearly constant. The catalysts with various tin contents were doped and characterized by TEM, XRD and H-2 chemisorption. In contrast to what is found at high temperature (>= 973 K), dry reforming tests performed at 773 K and successive TPO and TEM analysis showed that tin neither influences the catalyst deactivation rate nor prevents coke formation, present in the form of encapsulating carbon. The nickel dopant does not influence either the selectivity, ruled by reverse water gas shift Thermodynamics, but was shown to have a 3-4-fold decrease of intrinsic activity of the available surface nickel, thus indicating that Sn has a negative effect on adjacent Ni atoms. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:237 / 244
页数:8
相关论文
共 36 条
[1]   Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional theory calculations [J].
Abild-Pedersen, F ;
Norskov, JK ;
Rostrup-Nielsen, JR ;
Sehested, J ;
Helveg, S .
PHYSICAL REVIEW B, 2006, 73 (11)
[2]   SURFACE ORGANOMETALLIC CHEMISTRY ON METALS .3. FORMATION OF A BIMETALLIC NI-SN PHASE GENERATED BY REACTION OF A SN(N-C4H9)4 AND SILICA-SUPPORTED NICKEL-OXIDE [J].
AGNELLI, M ;
CANDY, JP ;
BASSET, JM ;
BOURNONVILLE, JP ;
FERRETTI, OA .
JOURNAL OF CATALYSIS, 1990, 121 (02) :236-247
[3]  
Agnelli M., 1989, CATAL TODAY, V6, P63
[4]   THE STOICHIOMETRY OF HYDROGEN AND CARBON-MONOXIDE CHEMISORPTION ON ALUMINA-SUPPORTED AND SILICA-SUPPORTED NICKEL [J].
BARTHOLOMEW, CH ;
PANNELL, RB .
JOURNAL OF CATALYSIS, 1980, 65 (02) :390-401
[5]   Mechanisms of catalyst deactivation [J].
Bartholomew, CH .
APPLIED CATALYSIS A-GENERAL, 2001, 212 (1-2) :17-60
[6]   Particle size effect in the low temperature reforming of methane by carbon dioxide on silica-supported Ni nanoparticles [J].
Baudouin, David ;
Rodemerck, Uwe ;
Krumeich, Frank ;
de Mallmann, Aimery ;
Szeto, Kai C. ;
Menard, Herve ;
Veyre, Laurent ;
Candy, Jean-Pierre ;
Webb, Paul B. ;
Thieuleux, Chloe ;
Coperet, Christophe .
JOURNAL OF CATALYSIS, 2013, 297 :27-34
[7]   Steam reforming and graphite formation on Ni catalysts [J].
Bengaard, HS ;
Norskov, JK ;
Sehested, J ;
Clausen, BS ;
Nielsen, LP ;
Molenbroek, AM ;
Rostrup-Nielsen, JR .
JOURNAL OF CATALYSIS, 2002, 209 (02) :365-384
[8]   Relation between crystallite size and dispersion on supported metal catalysts [J].
Borodzinski, A ;
Bonarowska, M .
LANGMUIR, 1997, 13 (21) :5613-5620
[9]   Effect of MgO additive on catalytic properties of Co/SiO2 in the dry reforming of methane [J].
Bouarab, R ;
Akdim, O ;
Auroux, A ;
Cherifi, O ;
Mirodatos, C .
APPLIED CATALYSIS A-GENERAL, 2004, 264 (02) :161-168
[10]   CO2 reforming of CH4 [J].
Bradford, MCJ ;
Vannice, MA .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 1999, 41 (01) :1-42