Mesomechanics of multiwall carbon nanotubes and nanowhiskers

被引:16
|
作者
Goldstein, R. V. [1 ]
Gorodtsov, V. A. [1 ]
Lisovenko, D. S. [1 ]
机构
[1] RAS, Ishlinsky Inst Problems Mech, Moscow 119526, Russia
关键词
carbon nanotubes; mechanical properties; Young's modulus; Poisson's ratio; tension; torsion; strength; anisotropy; MECHANICAL-PROPERTIES; SINGLE-WALL; ELASTIC-MODULUS; ROPES; DEFORMATION; STRENGTH; SHELLS;
D O I
10.1016/j.physme.2009.03.005
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The paper considers the initial (from nanometers) scales of multiscale solid structures using well-known carbon nanotubes (hollow nanorods) and nanowhiskers (solid nanorods) as an example. It is shown that structural anisotropy contributes significantly to the mechanical properties of nanotubes and nanowhiskers. It is demonstrated that the rod systems, beginning with those of nanometer cross-sections, can be described by conventional methods of continuum mechanics. Analysis is performed to elucidate the initial stages of mechanical instability and structural rearrangement of nanotubes. The paper also discusses the general peculiarities of multiscale rearrangement of solids at the mesolevel in terms of the development of instabilities and the formation of a mesoscale structural cascade. Consideration is given to plausible ways in which stochastic and regular mechanisms of the formation of structural hierarchy of solids show up under deformation and fracture. Stochastically common regularities and possible differences of the developed structural cascade and strains in solids and of the developed turbulence in fluid flows arc noted. The deterministic mechanisms are discussed in terms of the formation of ordered discontinuity systems (fracture structures) responsible for possible scale-to-scale fracture transition in which both scale enlargement and refinement of the fracture structures take place.
引用
收藏
页码:38 / 53
页数:16
相关论文
共 50 条
  • [1] Multiwall carbon nanotubes
    Schönenberger, C
    Forró, L
    PHYSICS WORLD, 2000, 13 (06) : 37 - 41
  • [2] Multiwall carbon nanotubes and their applications
    Tomishko, M. M.
    Demicheva, O. V.
    Alekseev, A. M.
    Tomishko, A. G.
    Klinova, L. L.
    Fetisova, O. E.
    RUSSIAN JOURNAL OF GENERAL CHEMISTRY, 2009, 79 (09) : 1982 - 1986
  • [3] Quantentransport in multiwall carbon nanotubes
    Schönenberger, C
    Bachtold, A
    Strunk, C
    Nussbaumer, T
    Salvetat, JP
    Forró, L
    ELECTRONIC PROPERTIES OF NOVEL MATERIALS - SCIENCE AND TECHNOLOGY OF MOLECULAR NANOSTRUCTURES, 1999, 486 : 399 - 402
  • [4] Multiwall carbon nanotubes and their applications
    M. M. Tomishko
    O. V. Demicheva
    A. M. Alekseev
    A. G. Tomishko
    L. L. Klinova
    O. E. Fetisova
    Russian Journal of General Chemistry, 2009, 79 : 1982 - 1986
  • [5] Multiwall Carbon Nanotubes and Nanofibers in Gallionella
    Hallberg, R.
    Tai, C. -W.
    GEOMICROBIOLOGY JOURNAL, 2014, 31 (09) : 764 - 768
  • [6] Electronic structure of multiwall carbon nanotubes
    Bulusheva, LG
    Okotrub, AV
    Fonseca, A
    Nagy, JB
    SYNTHETIC METALS, 2001, 121 (1-3) : 1207 - 1208
  • [7] Electric properties of multiwall carbon nanotubes
    Schönenberger, C
    NANOMETER SCALE SCIENCE AND TECHNOLOGY, 2001, 144 : 273 - 300
  • [8] Electromechanical properties of multiwall carbon nanotubes
    Zettl, A
    Cumings, J
    NANONETWORK MATERIALS: FULLERENES, NANOTUBES AND RELATED SYSTEMS, 2001, 590 : 107 - 112
  • [9] Free vibration of multiwall carbon nanotubes
    Wang, CY
    Ru, CQ
    Mioduchowski, A
    JOURNAL OF APPLIED PHYSICS, 2005, 97 (11)
  • [10] Electrocorrosion properties of multiwall carbon nanotubes
    Cherstiouk, O. V.
    Kuznetsov, V. L.
    Simonov, A. N.
    Mazov, I. N.
    Elumeeva, K. V.
    Moseva, N. S.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2010, 247 (11-12): : 2738 - 2742