Existence and multiplicity of positive solutions of the Ginzburg-Landau boundary value problem

被引:0
|
作者
De Coster, C
Habets, P
机构
[1] Inst Math Pure & Appl, B-1348 Louvain, Belgium
[2] Univ Littoral Cote Opale, LMPA Joseph Luoiville, F-62228 Calais, France
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence and multiplicity of positive solutions for a boundary value problem related to the one-dimensional Ginzburg-Landau equations for superconducting films in a parallel magnetic field. (C) 2000 Elsevier Science B.V. All rights reserved. MSG: 34B15.
引用
收藏
页码:317 / 327
页数:11
相关论文
共 50 条
  • [1] A BOUNDARY-VALUE PROBLEM IN THE THEORY OF GINZBURG-LANDAU
    DEMONVELBERTHIER, AMB
    GEORGESCU, V
    PURICE, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 307 (01): : 55 - 58
  • [2] A remark on multiplicity of solutions for the Ginzburg-Landau equation
    Zhou, F
    Zhou, Q
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1999, 16 (02): : 255 - 267
  • [3] A remark on multiplicity of solutions for the Ginzburg-Landau equation
    Zhou, Feng
    Zhou, Qing
    Annales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis, 16 (02): : 255 - 267
  • [4] A Neumann boundary value problem for a generalized Ginzburg-Landau equation
    Gao, HJ
    Gu, XH
    Bu, C
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 134 (2-3) : 553 - 560
  • [5] A DIRICHLET BOUNDARY-VALUE PROBLEM FOR THE GINZBURG-LANDAU EQUATION
    BU, C
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 1992, 17 (4B): : 599 - 603
  • [6] A BOUNDARY-VALUE PROBLEM RELATED TO THE GINZBURG-LANDAU MODEL
    DEMONVELBERTHIER, AB
    GEORGESCU, V
    PURICE, R
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 142 (01) : 1 - 23
  • [7] Solutions with vortices of a semi-stiff boundary value problem for the Ginzburg-Landau equation
    Berlyand, L.
    Rybalko, V.
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (06) : 1497 - 1531
  • [8] Uniqueness of solutions of the Ginzburg-Landau problem
    Ye, D
    Zhou, F
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (03) : 603 - 612
  • [9] Uniqueness of solutions of the Ginzburg-Landau problem
    Ye, D.
    Zhou, F.
    Nonlinear Analysis, Theory, Methods and Applications, 1996, 26 (03): : 603 - 612
  • [10] A Dirichlet inhomogeneous boundary value problem for a generalized Ginzburg-Landau equation
    Gao, Hongjun
    Gu, Xiaohua
    Bu, Charles
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 330 (01) : 699 - 714