Craspase is a CRISPR RNA-guided, RNA-activated protease

被引:63
作者
Hu, Chunyi [1 ]
van Beljouw, Sam P. B. [2 ,3 ]
Nam, Ki Hyun [4 ]
Schuler, Gabriel [1 ]
Ding, Fran [1 ]
Cui, Yanru [1 ]
Rodriguez-Molina, Alicia [2 ,3 ]
Haagsma, Anna C. [2 ,3 ]
Valk, Menno [2 ,3 ]
Pabst, Martin [5 ]
Brouns, Stan J. J. [2 ,3 ]
Ke, Ailong [1 ]
机构
[1] Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY 14853 USA
[2] Delft Univ Technol, Dept Bionanosci, NL-2629 HZ Delft, Netherlands
[3] Kavli Inst Nanosci, NL-2629 HZ Delft, Netherlands
[4] Pohang Univ Sci & Technol, Dept Life Sci, Pohang, South Korea
[5] Delft Univ Technol, Dept Environm Biotechnol, NL-2629 HZ Delft, Netherlands
基金
美国国家科学基金会; 美国国家卫生研究院; 欧洲研究理事会;
关键词
STRUCTURAL BASIS; CLEAVAGE;
D O I
10.1126/science.add5064
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The CRISPR-Cas type III-E RNA-targeting effector complex gRAMP/Cas7-11 is associated with a caspase-like protein (TPR-CHAT/Csx29) to form Craspase (CRISPR-guided caspase). Here, we use cryo-electron microscopy snapshots of Craspase to explain its target RNA cleavage and protease activation mechanisms. Target-guide pairing extending into the 5' region of the guide RNA displaces a gating loop in gRAMP, which triggers an extensive conformational relay that allosterically aligns the protease catalytic dyad and opens an amino acid side-chain-binding pocket. We further define Csx30 as the endogenous protein substrate that is site-specifically proteolyzed by RNA-activated Craspase. This protease activity is switched off by target RNA cleavage by gRAMP and is not activated by RNA targets containing a matching protospacer flanking sequence. We thus conclude that Craspase is a target RNA-activated protease with self-regulatory capacity.
引用
收藏
页码:1278 / +
页数:8
相关论文
共 30 条
[1]  
[Anonymous], 2021, bioRxiv
[2]   Physiological Characterization of an Anaerobic Ammonium-Oxidizing Bacterium Belonging to the "Candidatus Scalindua" Group [J].
Awata, Takanori ;
Oshiki, Mamoru ;
Kindaichi, Tomonori ;
Ozaki, Noriatsu ;
Ohashi, Akiyoshi ;
Okabe, Satoshi .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2013, 79 (13) :4145-4148
[3]  
Blatch GL, 1999, BIOESSAYS, V21, P932, DOI 10.1002/(SICI)1521-1878(199911)21:11<932::AID-BIES5>3.3.CO
[4]  
2-E
[5]   Cryo-EM structure of a metazoan separase-securin complex at near-atomic resolution [J].
Boland, Andreas ;
Martin, Thomas G. ;
Zhang, Ziguo ;
Yang, Jing ;
Bai, Xiao-chen ;
Chang, Leifu ;
Scheres, Sjors H. W. ;
Barford, David .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2017, 24 (04) :414-+
[6]   New Type III CRISPR variant and programmable RNA targeting tool: Oh, thank heaven for Cas7-11 [J].
Catchpole, Ryan J. ;
Terns, Michael P. .
MOLECULAR CELL, 2021, 81 (21) :4354-4356
[7]   Pore-forming activity and structural autoinhibition of the gasdermin family [J].
Ding, Jingjin ;
Wang, Kun ;
Liu, Wang ;
She, Yang ;
Sun, Qi ;
Shi, Jianjin ;
Sun, Hanzi ;
Wang, Da-Cheng ;
Shao, Feng .
NATURE, 2016, 535 (7610) :111-+
[8]   Systematic discovery of antiphage defense systems in the microbial pangenome [J].
Doron, Shany ;
Melamed, Sarah ;
Ofir, Gal ;
Leavitt, Azita ;
Lopatina, Anna ;
Keren, Mai ;
Amitai, Gil ;
Sorek, Rotem .
SCIENCE, 2018, 359 (6379)
[9]   Coupling of ssRNA cleavage with DNase activity in type III-A CRISPR-Csm revealed by cryo-EM and biochemistry [J].
Guo, Minghui ;
Zhang, Kaiming ;
Zhu, Yuwei ;
Pintilie, Grigore D. ;
Guan, Xiaoyu ;
Li, Shanshan ;
Schmid, Michael F. ;
Ma, Zhuo ;
Chiu, Wah ;
Huang, Zhiwei .
CELL RESEARCH, 2019, 29 (04) :305-312
[10]   CRISPR meets caspase [J].
Hochstrasser, Megan L. ;
Nunez, James K. .
NATURE MICROBIOLOGY, 2021, 6 (12) :1481-1482