Ultra-strong light-matter coupling for designer Reststrahlen band

被引:81
作者
Askenazi, B. [1 ]
Vasanelli, A. [1 ]
Delteil, A. [1 ]
Todorov, Y. [1 ]
Andreani, L. C. [2 ,3 ]
Beaudoin, G. [4 ]
Sagnes, I. [4 ]
Sirtori, C. [1 ]
机构
[1] Univ Paris Diderot, Sorbonne Paris Cite, Lab Mat & Phenomenes Quant, UMR7162, F-75013 Paris, France
[2] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy
[3] CNISM, I-27100 Pavia, Italy
[4] CNRS, Lab Photon & Nanostruct, F-91460 Marcoussis, France
来源
NEW JOURNAL OF PHYSICS | 2014年 / 16卷
关键词
quantum light-matter interaction; polaritons; quantum wells; Berreman mode; OPTICAL-PROPERTIES; MICROCAVITIES; METAMATERIAL; EPSILON; STATES; FILMS; MODE;
D O I
10.1088/1367-2630/16/4/043029
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The strength of the light-matter interaction depends on the number of dipoles that can couple with the photon trapped in an optical cavity. The coupling strength can thus be maximized by filling the entire cavity volume with an ensemble of interacting dipoles. In this work this is achieved by inserting a highly doped semiconductor layer in a subwavelength plasmonic resonator. In our system the ultra-strong light-matter coupling occurs between a collective electronic excitation and the cavity photon. The measured coupling strength is 73% of the matter excitation energy, the highest ever reported for a light-matter coupled system at room temperature. We experimentally and theoretically demonstrate that such an ultra-strong interaction modifies the optical properties on a very wide spectral range (20-250 meV), and results in the appearance of a photonic gap of 38 meV, independently of the light polarization and angle of incidence. Light-matter ultra-strong coupling can thus be exploited to conceive metasurfaces with an engineered reflectivity band.
引用
收藏
页数:15
相关论文
共 38 条
[1]   Electrical control of polariton coupling in intersubband microcavities [J].
Anappara, AA ;
Tredicucci, A ;
Biasiol, G ;
Sorba, L .
APPLIED PHYSICS LETTERS, 2005, 87 (05)
[2]   ELECTRONIC-PROPERTIES OF TWO-DIMENSIONAL SYSTEMS [J].
ANDO, T ;
FOWLER, AB ;
STERN, F .
REVIEWS OF MODERN PHYSICS, 1982, 54 (02) :437-672
[3]   Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities [J].
Bajoni, Daniele ;
Senellart, Pascale ;
Wertz, Esther ;
Sagnes, Isabelle ;
Miard, Audrey ;
Lemaitre, Aristide ;
Bloch, Jacqueline .
PHYSICAL REVIEW LETTERS, 2008, 100 (04)
[4]   All-optical polariton transistor [J].
Ballarini, D. ;
De Giorgi, M. ;
Cancellieri, E. ;
Houdre, R. ;
Giacobino, E. ;
Cingolani, R. ;
Bramati, A. ;
Gigli, G. ;
Sanvitto, D. .
NATURE COMMUNICATIONS, 2013, 4
[5]   Quantum Simulation of the Ultrastrong-Coupling Dynamics in Circuit Quantum Electrodynamics [J].
Ballester, D. ;
Romero, G. ;
Garcia-Ripoll, J. J. ;
Deppe, F. ;
Solano, E. .
PHYSICAL REVIEW X, 2012, 2 (02)
[6]   Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor [J].
Bellessa, J. ;
Symonds, C. ;
Vynck, K. ;
Lemaitre, A. ;
Brioude, A. ;
Beaur, L. ;
Plenet, J. C. ;
Viste, P. ;
Felbacq, D. ;
Cambril, E. ;
Valvin, P. .
PHYSICAL REVIEW B, 2009, 80 (03)
[7]   Strong coupling in the sub-wavelength limit using metamaterial nanocavities [J].
Benz, A. ;
Campione, S. ;
Liu, S. ;
Montano, I. ;
Klem, J. F. ;
Allerman, A. ;
Wendt, J. R. ;
Sinclair, M. B. ;
Capolino, F. ;
Brener, I. .
NATURE COMMUNICATIONS, 2013, 4
[8]   Quantum vacuum properties of the intersubband cavity polariton field [J].
Ciuti, C ;
Bastard, G ;
Carusotto, I .
PHYSICAL REVIEW B, 2005, 72 (11)
[9]   Electron-optical-phonon interaction in the In1-xGaxAs/In1-yAlyAs superlattice -: art. no. 125314 [J].
Compagnone, F ;
Di Carlo, A ;
Lugli, P .
PHYSICAL REVIEW B, 2002, 65 (12) :1-10
[10]   Phonon linewidth in III-V semiconductors from density-functional perturbation theory [J].
Debernardi, A .
PHYSICAL REVIEW B, 1998, 57 (20) :12847-12858